Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Two-dimensional diamonds from sp2-to-sp3 phase transitions

Abstract

The ability to change material properties through phase engineering has long been sought, with the goal of ad hoc tunability of the physical and chemical properties of the transformed phases. The synthesis and study of graphene have made it possible to explore the mechanisms of 2D phase transformations, opening up paths towards the formation of 2D diamond and diamond thin films. This Review examines the state-of-the-art phase transformations in 2D graphitic systems and beyond. The theoretical models formulated to describe the sp2-to-sp3 transitions from graphene to 2D diamond and the experimental processes developed to induce the transition to 2D diamond are discussed, focusing on the transformations induced by chemical functionalization and pressure. The effects of different structural and environmental factors on the evolution of the phase transformations and on the properties of the transformed diamond phases are explored. Without comprehensively reviewing phase transitions in all 2D materials, we briefly mention hexagonal boron nitride, phosphorene, transition metal dichalcogenides and MXenes systems. Finally, the Review delves into the technologies and applications of phase transformations in 2D materials and the opportunities for this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase transformation of graphene into sp3 graphane and 2D diamond through chemical functionalization.
Fig. 2: Pressure-induced phase transformation of epitaxial graphene into 2D diamond.
Fig. 3: Pressure-induced phase transformation of graphene into 2D OH-diamane.
Fig. 4: Pressure-induced phase transformation of hBN into 2D diamond BN.
Fig. 5: Phase transformations in phosphorene.
Fig. 6: Phase transformations in TMDs.
Fig. 7: Phase transformations in MXenes.

Similar content being viewed by others

References

  1. Burchfield, L. A., Al Fahim, M., Wittman, R. S., Delodovici, F. & Manini, N. Novamene: a new class of carbon allotropes. Heliyon 3, e00242 (2017).

    Article  Google Scholar 

  2. Ram, B. & Mizuseki, H. C568: a new two-dimensional sp2sp3 hybridized allotrope of carbon. Carbon 158, 827–835 (2020).

    Article  CAS  Google Scholar 

  3. Zhang, S. et al. Penta-graphene: a new carbon allotrope. Proc. Natl Acad. Sci. USA 112, 2372–2377 (2015).

    Article  CAS  Google Scholar 

  4. Rong, J. et al. Planar metallic carbon allotrope from graphene-like nanoribbons. Carbon 135, 21–28 (2018).

    Article  CAS  Google Scholar 

  5. Xu, Y., Lu, Y., Zhu, X. & Wang, M. TE-C36 carbon: a new semiconducting phase with an all-sp3 bonding network. RSC Adv. 8, 1846–1851 (2018).

    Article  CAS  Google Scholar 

  6. Hu, J. et al. Nano carbon black-based high performance wearable pressure sensors. Nanomaterials 10, 664 (2020).

    Article  CAS  Google Scholar 

  7. Liu, J., Cui, L. & Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9, 9243–9257 (2013).

    Article  CAS  Google Scholar 

  8. Afsahi, S. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 100, 85–88 (2018).

    Article  CAS  Google Scholar 

  9. Thebo, K. H. et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018).

    Article  Google Scholar 

  10. Xu, Y. et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014).

    Article  CAS  Google Scholar 

  11. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

    Article  CAS  Google Scholar 

  12. Bundy, F. P. et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article  CAS  Google Scholar 

  13. Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. G. & Kvashnin, D. G. Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett. 90, 134–138 (2009). This is the first study to theoretically propose a single-layer diamond structure.

    Article  CAS  Google Scholar 

  14. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  CAS  Google Scholar 

  15. Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press. Res. 26, 63–69 (2006).

    Article  CAS  Google Scholar 

  16. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    Article  CAS  Google Scholar 

  17. Erohin, S. V., Ruan, Q., Sorokin, P. B. & Yakobson, B. I. Nano-thermodynamics of chemically induced graphene–diamond transformation. Small 16, 2004782 (2020).

    Article  CAS  Google Scholar 

  18. Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. & Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 111, 085503 (2013).

    Article  Google Scholar 

  19. Kvashnin, A. G., Avramov, P. V., Kvashnin, D. G., Chernozatonskii, L. A. & Sorokin, P. B. Features of electronic, mechanical, and electromechanical properties of fluorinated diamond films of nanometer thickness. J. Phys. Chem. C 121, 28484–28489 (2017).

    Article  CAS  Google Scholar 

  20. Shul’zhenko, A. A., Jaworska, L., Sokolov, A. N., Gargin, V. G. & Belyavina, N. N. Phase transformations of n-layer graphenes into diamond at high pressures and temperatures. J. Superhard Mater. 39, 75–82 (2017).

    Article  Google Scholar 

  21. Gao, Y. et al. Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018). This is the first work to experimentally demonstrate an ultrahard diamond-like phase obtained by applying pressure to two-layer epitaxial graphene.

    Article  CAS  Google Scholar 

  22. Paul, S., Momeni, K. & Levitas, V. I. Shear-induced diamondization of multilayer graphene structures: a computational study. Carbon 167, 140–147 (2020).

    Article  CAS  Google Scholar 

  23. Niraula, P. R., Cao, T. & Bongiorno, A. Mechanical properties of sp3-bonded carbon and boron nitride 2D membranes: a first principles study. Comput. Mater. Sci. 179, 109635 (2020).

    Article  CAS  Google Scholar 

  24. Luo, Z. et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009).

    Article  CAS  Google Scholar 

  25. Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014).

    Article  CAS  Google Scholar 

  26. Bakharev, P. V. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 15, 59–66 (2020). This work describes the first TEM measurement of chemically induced fluorinated single-layer diamond from CVD graphene.

    Article  CAS  Google Scholar 

  27. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  28. Horbatenko, Y. et al. Synergetic interplay between pressure and surface chemistry for the conversion of sp2-bonded carbon layers into sp3-bonded carbon films. Carbon 106, 158–163 (2016).

    Article  CAS  Google Scholar 

  29. Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

    Article  Google Scholar 

  30. Zhou, J. et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9, 3867–3870 (2009).

    Article  CAS  Google Scholar 

  31. Barboza, A. P. M. et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 23, 3014 (2011). This work describes the pressure-induced formation of an insulating phase associated with diamane from exfoliated two-layer graphene.

    Article  CAS  Google Scholar 

  32. Martins, L. G. P. et al. Raman evidence for pressure-induced formation of diamondene. Nat. Commun. 8, 96 (2017).

    Article  Google Scholar 

  33. Piazza, F., Monthioux, M., Puech, P. & Gerber, I. C. Towards a better understanding of the structure of diamanoïds and diamanoïd/graphene hybrids. Carbon 156, 234–241 (2020).

    Article  CAS  Google Scholar 

  34. Cellini, F., Lavini, F., Berger, C., de Heer, W. & Riedo, E. Layer dependence of graphene–diamene phase transition in epitaxial and exfoliated few-layer graphene using machine learning. 2D Mater. 6, 035043 (2019).

    Article  CAS  Google Scholar 

  35. Leenaerts, O., Peelaers, H., Hernández-Nieves, A. D., Partoens, B. & Peeters, F. M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).

    Article  Google Scholar 

  36. Geng, P. & Branicio, P. S. Atomistic insights on the pressure-induced multi-layer graphene to diamond-like structure transformation. Carbon 175, 243–253 (2021).

    Article  CAS  Google Scholar 

  37. Li, J., Li, H., Wang, Z. & Zou, G. Structure, magnetic, and electronic properties of hydrogenated two-dimensional diamond films. Appl. Phys. Lett. 102, 073114 (2013).

    Article  Google Scholar 

  38. Leenaerts, O., Partoens, B. & Peeters, F. M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 80, 245422 (2009).

    Article  Google Scholar 

  39. Sivek, J., Leenaerts, O., Partoens, B. & Peeters, F. M. First-principles investigation of bilayer fluorographene. J. Phys. Chem. C 116, 19240–19245 (2012).

    Article  CAS  Google Scholar 

  40. Ke, F. et al. Large bandgap of pressurized trilayer graphene. Proc. Natl Acad. Sci. USA 116, 9186–9190 (2019).

    Article  CAS  Google Scholar 

  41. Lu, S. et al. High pressure transformation of graphene nanoplates: a Raman study. Chem. Phys. Lett. 585, 101–106 (2013).

    Article  CAS  Google Scholar 

  42. Rysaeva, L. K., Lisovenko, D. S., Gorodtsov, V. A. & Baimova, J. A. Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. Comput. Mater. Sci. 172, 109355 (2020).

    Article  CAS  Google Scholar 

  43. Wu, Y.-C., Shao, J.-L., Zheng, Z. & Zhan, H. Mechanical properties of a single-layer diamane under tension and bending. J. Phys. Chem. C 125, 915–922 (2021).

    Article  CAS  Google Scholar 

  44. Chernozatonskii, L. A. et al. Influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness. J. Phys. Chem. C 115, 132–136 (2010).

    Article  Google Scholar 

  45. Chernozatonskii, L. A., Mavrin, B. N. & Sorokin, P. B. Determination of ultrathin diamond films by Raman spectroscopy. Phys. Status Solidi 249, 1550–1554 (2012).

    Article  CAS  Google Scholar 

  46. Chernozatonskii, L. A., Katin, K. P., Demin, V. A. & Maslov, M. M. Moiré diamanes based on the hydrogenated or fluorinated twisted bigraphene: the features of atomic and electronic structures, Raman and infrared spectra. Appl. Surf. Sci. 537, 148011 (2021).

    Article  CAS  Google Scholar 

  47. Wang, L., Zhang, R., Shi, J. & Cai, K. Vibration behavior of diamondene nano-ribbon passivated by hydrogen. Sci. Rep. 9, 15783 (2019).

    Article  Google Scholar 

  48. Shi, J., Cai, K. & Xie, Y. M. Thermal and tensile properties of diamondene at finite temperature: a molecular dynamics study. Mater. Des. 156, 125–134 (2018).

    Article  CAS  Google Scholar 

  49. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  50. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  51. Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016).

    Article  Google Scholar 

  52. Cellini, F. et al. Pressure-induced formation and mechanical properties of 2D diamond boron nitride. Adv. Sci. 8, 2002541 (2020).

    Article  Google Scholar 

  53. Kürkçü, C. & Yamçıçıer, Ç. Structural, electronic, elastic and vibrational properties of two dimensional graphene-like BN under high pressure. Solid State Commun. 303304, 113740 (2019).

    Article  Google Scholar 

  54. Dong, J. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 124, 065701 (2020).

    Article  CAS  Google Scholar 

  55. Khaliullin, R. Z., Eshet, H., Kuhne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).

    Article  CAS  Google Scholar 

  56. Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

    Article  CAS  Google Scholar 

  57. Xie, H., Yin, F., Yu, T., Wang, J. T. & Liang, C. Mechanism for direct graphite-to-diamond phase transition. Sci. Rep. 4, 5930 (2014).

    Article  CAS  Google Scholar 

  58. Hanfland, M., Beister, H. & Syassen, K. Graphite under pressure: equation of state and first-order Raman modes. Phys. Rev. B 39, 12598–12603 (1989).

    Article  CAS  Google Scholar 

  59. Yagi, T., Utsumi, W., Yamakata, M.-A., Kikegawa, T. & Shimomura, O. High-pressure in situ X-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature. Phys. Rev. B 46, 6031–6039 (1992).

    Article  CAS  Google Scholar 

  60. Bundy, F. & Kasper, J. Hexagonal diamond — a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967).

    Article  CAS  Google Scholar 

  61. Odkhuu, D., Shin, D., Ruoff, R. S. & Park, N. Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces. Sci. Rep. 3, 1–7 (2013).

    Article  Google Scholar 

  62. Chernozatonskii, L. A., Demin, V. A. & Kvashnin, D. G. Fully hydrogenated and fluorinated bigraphenes–diamanes: theoretical and experimental studies. C 7, 17 (2021).

    CAS  Google Scholar 

  63. Chernozatonskiĭ, L. A., Sorokin, P. B., Belova, E. É., Brüning, J. & Fedorov, A. S. Superlattices consisting of “lines” of adsorbed hydrogen atom pairs on graphene. JETP Lett. 85, 77–81 (2007).

    Article  Google Scholar 

  64. Hornekær, L. et al. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104 (2006).

    Article  Google Scholar 

  65. Duplock, E. J., Scheffler, M. & Lindan, P. J. Hallmark of perfect graphene. Phys. Rev. Lett. 92, 225502 (2004).

    Article  Google Scholar 

  66. Boukhvalov, D. W., Katsnelson, M. I. & Lichtenstein, A. I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008).

    Article  Google Scholar 

  67. Son, J. et al. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat. Commun. 7, 13261 (2016).

    Article  CAS  Google Scholar 

  68. Openov, L. & Podlivaev, A. Thermal stability of single-side hydrogenated graphene. Tech. Phys. 57, 1603–1605 (2012).

    Article  CAS  Google Scholar 

  69. Muñoz, E., Singh, A. K., Ribas, M. A., Penev, E. S. & Yakobson, B. I. The ultimate diamond slab: graphAne versus graphEne. Diam. Relat. Mater. 19, 368–373 (2010).

    Article  Google Scholar 

  70. Spear, K. E. & Dismukes, J. P. Synthetic Diamond: Emerging CVD Science and Technology Vol. 25 (Wiley, 1994).

  71. Zhu, L. et al. Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology 22, 185202 (2011).

    Article  Google Scholar 

  72. Wei, X., Fragneaud, B., Marianetti, C. A. & Kysar, J. W. Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80, 205407 (2009).

    Article  Google Scholar 

  73. Sorokin, P. B. & Yakobson, B. I. Two-dimensional diamond-diamane: current state and further prospects. Nano Lett. 21, 5475–5484 (2021).

    Article  CAS  Google Scholar 

  74. Pakornchote, T. et al. Phase stabilities and vibrational analysis of hydrogenated diamondized bilayer graphenes: a first principles investigation. Carbon 146, 468–475 (2019).

    Article  CAS  Google Scholar 

  75. Piazza, F. et al. Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films. Carbon 145, 10–22 (2019).

    Article  CAS  Google Scholar 

  76. Piazza, F., Kelvin, C., Monthioux, M., Puech, P. & Gerber, I. Raman evidence for the successful synthesis of diamane. Carbon 169, 129–133 (2020).

    Article  CAS  Google Scholar 

  77. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010).

    Article  CAS  Google Scholar 

  78. Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010).

    Article  CAS  Google Scholar 

  79. Ribas, M. A., Singh, A. K., Sorokin, P. B. & Yakobson, B. I. Patterning nanoroads and quantum dots on fluorinated graphene. Nano Res. 4, 143–152 (2011).

    Article  CAS  Google Scholar 

  80. Zbořil, R. et al. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6, 2885–2891 (2010).

    Article  Google Scholar 

  81. Antipina, L. Y. & Sorokin, P. B. Converting chemically functionalized few-layer graphene to diamond films: a computational study. J. Phys. Chem. C 119, 2828–2836 (2015).

    Article  CAS  Google Scholar 

  82. Hu, C.-H. et al. Structural stability and electronic and magnetic properties of fluorinated bilayer graphene. J. Phys. Chem. C 117, 3572–3579 (2013).

    Article  CAS  Google Scholar 

  83. Cheng, S. H. et al. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435 (2010).

    Article  Google Scholar 

  84. Zhou, J., Wu, M. M., Zhou, X. & Sun, Q. Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 95, 103108 (2009).

    Article  Google Scholar 

  85. Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First-principles study of graphite monofluoride (CF)n. Phys. Rev. B 47, 16162 (1993).

    Article  CAS  Google Scholar 

  86. Withers, F., Dubois, M. & Savchenko, A. K. Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403 (2010).

    Article  Google Scholar 

  87. Wu, S. et al. Shock exfoliation of graphene fluoride in microwave. Small 16, 1903397 (2020).

    Article  CAS  Google Scholar 

  88. Lei, F. et al. Microwave-assisted liquid phase exfoliation of graphite fluoride into fluorographene. Chem. Eng. J. 360, 673–679 (2019).

    Article  CAS  Google Scholar 

  89. Worsley, K. A. et al. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007).

    Article  CAS  Google Scholar 

  90. Chen, X., Dubois, M., Radescu, S., Rawal, A. & Zhao, C. Liquid-phase exfoliation of F-diamane-like nanosheets. Carbon 175, 124–130 (2021).

    Article  CAS  Google Scholar 

  91. Herraiz, M., Dubois, M., Batisse, N., Hajjar-Garreau, S. & Simon, L. Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite. Dalton Trans. 47, 4596–4606 (2018).

    Article  CAS  Google Scholar 

  92. Zhang, M., Liu, L., He, T., Wu, G. & Chen, P. Melamine assisted solid exfoliation approach for the synthesis of few-layered fluorinated graphene nanosheets. Mater. Lett. 171, 191–194 (2016).

    Article  CAS  Google Scholar 

  93. Jeon, K.-J. et al. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5, 1042–1046 (2011).

    Article  CAS  Google Scholar 

  94. Feng, W., Long, P., Feng, Y. & Li, Y. Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016).

    Article  Google Scholar 

  95. Withers, F., Russo, S., Dubois, M. & Craciun, M. F. Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res. Lett. 6, 526 (2011).

    Article  Google Scholar 

  96. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  97. Mortazavi, B. et al. First-principles investigation of mechanical, electronic and optical properties of H-, F- and Cl-diamane. Appl. Surf. Sci. 528, 147035 (2020).

    Article  CAS  Google Scholar 

  98. Boulfelfel, S. E., Oganov, A. R. & Leoni, S. Understanding the nature of “superhard graphite”. Sci. Rep. 2, 471 (2012).

    Article  Google Scholar 

  99. Harrison, W. A. Graphite. in Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond Ch. 3.6.1 (Dover, 1989).

  100. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  101. Cellini, F. et al. Epitaxial two-layer graphene under pressure: diamene stiffer than diamond. FlatChem 10, 8–13 (2018).

    Article  CAS  Google Scholar 

  102. Ke, F. et al. Synthesis of atomically thin hexagonal diamond with compression. Nano Lett. 20, 5916–5921 (2020).

    Article  CAS  Google Scholar 

  103. Cellini, F., Gao, Y. & Riedo, E. Å-indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. Sci. Rep. 9, 4075 (2019).

    Article  Google Scholar 

  104. Lin, K. et al. Enhanced mechanical properties of 4H-SiC by epitaxial carbon films obtained from bilayer graphene. Nanotechnology 31, 195702 (2020).

    Article  CAS  Google Scholar 

  105. Clark, S. M., Jeon, K.-J., Chen, J.-Y. & Yoo, C.-S. Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 154, 15–18 (2013).

    Article  CAS  Google Scholar 

  106. Celeste, A., Borondics, F. & Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Press. Res. 39, 608–618 (2019).

    Article  CAS  Google Scholar 

  107. Fedotenko, T. et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies. Rev. Sci. Instrum. 90, 104501 (2019).

    Article  Google Scholar 

  108. Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

    Article  Google Scholar 

  109. Kohn, W. Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393–394 (1959).

    Article  CAS  Google Scholar 

  110. Hanfland, M., Syassen, K. & Sonnenschein, R. Optical reflectivity of graphite under pressure. Phys. Rev. B 40, 1951–1954 (1989).

    Article  CAS  Google Scholar 

  111. Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

    Article  Google Scholar 

  112. Yagi, W. U. A. T. Light-transparent phase formed by room-temperature compression of graphite. Science 252, 1542–1544 (1991).

    Article  Google Scholar 

  113. Pimenta Martins, L. G. et al. Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression. Carbon 173, 744–757 (2021).

    Article  CAS  Google Scholar 

  114. Wong, S. et al. The shear-driven transformation mechanism from glassy carbon to hexagonal diamond. Carbon 142, 475–481 (2019).

    Article  CAS  Google Scholar 

  115. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  116. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    Article  CAS  Google Scholar 

  117. Cai, Q. et al. Boron nitride nanosheet-veiled gold nanoparticles for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 8, 15630–15636 (2016).

    Article  CAS  Google Scholar 

  118. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

    Article  CAS  Google Scholar 

  119. Gao, S.-P. Crystal structures and band gap characters of h-BN polytypes predicted by the dispersion corrected DFT and GW method. Solid State Commun. 152, 1817–1820 (2012).

    Article  CAS  Google Scholar 

  120. Li, L. H., Cervenka, J., Watanabe, K., Taniguchi, T. & Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014).

    Article  CAS  Google Scholar 

  121. Liu, Z. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 4, 2541 (2013).

    Article  Google Scholar 

  122. Falin, A. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Article  CAS  Google Scholar 

  123. Corrigan, F. R. & Bundy, F. P. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J. Chem. Phys. 63, 3812 (1975).

    Article  CAS  Google Scholar 

  124. Taniguchi, T., Sato, T., Utsumi, W., Kikegawa, T. & Shimomura, O. Effect of nonhydrostaticity on the pressure induced phase transformation of rhombohedral boron nitride. Appl. Phys. Lett. 70, 2392–2394 (1997).

    Article  CAS  Google Scholar 

  125. Feng, B., Levitas, V. I. & Li, W. FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell. Int. J. Plast. 113, 236–254 (2019).

    Article  CAS  Google Scholar 

  126. Ji, C. et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc. Natl Acad. Sci. USA 109, 19108–19112 (2012).

    Article  CAS  Google Scholar 

  127. Meng, Y. et al. The formation of sp3 bonding in compressed BN. Nat. Mater. 3, 111–114 (2004).

    Article  CAS  Google Scholar 

  128. Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

    Article  CAS  Google Scholar 

  129. Liang, H. et al. Ultrahard and stable nanostructured cubic boron nitride from hexagonal boron nitride. Ceram. Int. 46, 12788–12794 (2020).

    Article  CAS  Google Scholar 

  130. Deura, M., Kutsukake, K., Ohno, Y., Yonenaga, I. & Taniguchi, T. Nanoindentation measurements of a highly oriented wurtzite-type boron nitride bulk crystal. Jpn J. Appl. Phys. 56, 030301 (2017).

    Article  Google Scholar 

  131. Schimpf, C., Schwarz, M. R., Lathe, C., Kroke, E. & Rafaja, D. Effect of the microstructure of graphitic boron nitride on the kinetics of the formation of boron nitride high-pressure phases. J. Eur. Ceram. Soc. 39, 944–951 (2019).

    Article  CAS  Google Scholar 

  132. Chen, C. et al. Stabilizing the metastable superhard material wurtzite boron nitride by three-dimensional networks of planar defects. Proc. Natl Acad. Sci. USA 116, 11181–11186 (2019).

    Article  CAS  Google Scholar 

  133. Le, P. T. T., Davoudiniya, M. & Yarmohammadi, M. Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for Bernal bilayer graphene and hexagonal boron-nitride. Phys. Chem. Chem. Phys. 21, 238–245 (2019).

    Article  Google Scholar 

  134. Barboza, A. P. M. et al. Compression-induced modification of boron nitride layers: a conductive two-dimensional BN compound. ACS Nano 12, 5866–5872 (2018).

    Article  CAS  Google Scholar 

  135. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  136. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  137. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  138. Khoa, D. Q., Davoudiniya, M., Hoi, B. D. & Yarmohammadi, M. Strain engineering of optical activity in phosphorene. RSC Adv. 9, 19006–19015 (2019).

    Article  CAS  Google Scholar 

  139. Alidoust, M., Halterman, K., Pan, D., Willatzen, M. & Akola, J. Strain-engineered widely tunable perfect absorption angle in black phosphorus from first principles. Phys. Rev. B 102, 115307 (2020).

    Article  CAS  Google Scholar 

  140. Alidoust, M., Willatzen, M. & Jauho, A.-P. Fraunhofer response and supercurrent spin switching in black phosphorus with strain and disorder. Phys. Rev. B 98, 184505 (2018).

    Article  CAS  Google Scholar 

  141. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  142. Fei, R. & Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).

    Article  CAS  Google Scholar 

  143. Akhtar, M. et al. Bilayer phosphorene under high pressure: in situ Raman spectroscopy. Phys. Chem. Chem. Phys. 21, 7298–7304 (2019).

    Article  CAS  Google Scholar 

  144. Odkhuu, D., Sangaa, D. & Taivansaikhan, P. Strain tunable spin reorientation of an individual Fe atom on 2D blue phosphorous. J. Phys. Condens. Matter 31, 485802 (2019).

    Article  CAS  Google Scholar 

  145. Zhu, Z. & Tomanek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).

    Article  Google Scholar 

  146. Scelta, D. et al. Interlayer bond formation in black phosphorus at high pressure. Angew. Chem. Int. Ed. 56, 14135–14140 (2017).

    Article  CAS  Google Scholar 

  147. Scelta, D. et al. The p-sc structure in phosphorus: bringing order to the high pressure phases of group 15 elements. Chem. Commun. 54, 10554–10557 (2018).

    Article  CAS  Google Scholar 

  148. Fujihisa, H. et al. Incommensurate structure of phosphorus phase IV. Phys. Rev. Lett. 98, 175501 (2007).

    Article  Google Scholar 

  149. Nishikawa, A., Niizeki, K. & Shindo, K. Electronic structure of phosphorus under high pressure. Phys. Status Solidi 223, 189–193 (2001).

    Article  CAS  Google Scholar 

  150. Hien, N. D., Davoudiniya, M., Mirabbaszadeh, K., Phuong, L. T. T. & Yarmohammadi, M. Strain-induced electronic phase transition in phosphorene: a Green’s function study. Chem. Phys. 522, 249–255 (2019).

    Article  CAS  Google Scholar 

  151. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  CAS  Google Scholar 

  152. Xiang, Z. J. et al. Pressure-induced electronic transition in black phosphorus. Phys. Rev. Lett. 115, 186403 (2015).

    Article  CAS  Google Scholar 

  153. Peng, X., Wei, Q. & Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014).

    Article  CAS  Google Scholar 

  154. Gong, P.-L. et al. Robust and pristine topological dirac semimetal phase in pressured two-dimensional black phosphorus. J. Phys. Chem. C 121, 20931–20936 (2017).

    Article  CAS  Google Scholar 

  155. Barik, G. & Pal, S. Energy gap-modulated blue phosphorene as flexible anodes for lithium- and sodium-ion batteries. J. Phys. Chem. C 123, 2808–2819 (2019).

    Article  CAS  Google Scholar 

  156. Le, P. T. T., Mirabbaszadeh, K., Davoudiniya, M. & Yarmohammadi, M. Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition. Phys. Chem. Chem. Phys. 20, 25044–25051 (2018).

    Article  CAS  Google Scholar 

  157. Le, P. T. T., Davoudiniya, M., Mirabbaszadeh, K., Hoi, B. D. & Yarmohammadi, M. Combined electric and magnetic field-induced anisotropic tunable electronic phase transition in AB-stacked bilayer phosphorene. Physica E 106, 250–257 (2019).

    Article  CAS  Google Scholar 

  158. Pham, K. D. et al. Electric field tuning of dynamical dielectric function in phosphorene. Chem. Phys. Lett. 731, 136606 (2019).

    Article  CAS  Google Scholar 

  159. Service, R. F. Beyond graphene. Science 348, 490–492 (2015).

    Article  CAS  Google Scholar 

  160. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  161. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  162. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  163. Wang, Z. et al. Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics. Nanoscale 8, 13245–13250 (2016).

    Article  CAS  Google Scholar 

  164. Molina-Mendoza, A. J., Paur, M. & Mueller, T. Nonvolatile programmable WSe2 photodetector. Adv. Opt. Mater. 8, 2000417 (2020).

    Article  CAS  Google Scholar 

  165. Zhao, Y. et al. Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv. Mater. 32, e2000740 (2020).

    Article  Google Scholar 

  166. Mehboudi, M. et al. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 117, 246802 (2016).

    Article  Google Scholar 

  167. Villanova, J. W., Kumar, P. & Barraza-Lopez, S. Theory of finite-temperature two-dimensional structural transformations in group-IV monochalcogenide monolayers. Phys. Rev. B 101, 184101 (2020).

    Article  CAS  Google Scholar 

  168. Friedman, A. L. et al. Evidence for chemical vapor induced 2H to 1T phase transition in MoX2 (X = Se, S) transition metal dichalcogenide films. Sci. Rep. 7, 1–9 (2017).

    Article  CAS  Google Scholar 

  169. Qu, Y., Pan, H. & Kwok, C. T. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties. Sci. Rep. 6, 34186 (2016).

    Article  CAS  Google Scholar 

  170. Duerloo, K. A., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  Google Scholar 

  171. Wang, X. et al. Pressure-induced iso-structural phase transition and metallization in WSe2. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  172. Hou, W. et al. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668–673 (2019).

    Article  CAS  Google Scholar 

  173. Song, S. et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  CAS  Google Scholar 

  174. Aslan, O. B., Deng, M., Brongersma, M. L. & Heinz, T. F. Strained bilayer WSe2 with reduced exciton-phonon coupling. Phys. Rev. B 101, 115305 (2020).

    Article  CAS  Google Scholar 

  175. Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    Article  CAS  Google Scholar 

  176. Lin, Y. C., Dumcenco, D. O., Huang, Y. S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  177. Rehn, D. A., Li, Y., Pop, E. & Reed, E. J. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials. npj Comput. Mater. 4, 2 (2018).

    Article  Google Scholar 

  178. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  Google Scholar 

  179. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  180. Zhao, Z. et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun. 6, 7312 (2015).

    Article  CAS  Google Scholar 

  181. Fan, X., Chang, C.-H., Zheng, W., Kuo, J.-L. & Singh, D. J. The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C. 119, 10189–10196 (2015).

    Article  CAS  Google Scholar 

  182. Nayak, A. P. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 15, 346–353 (2015).

    Article  CAS  Google Scholar 

  183. Li, Y., Duerloo, K. A., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    Article  CAS  Google Scholar 

  184. Zakhidov, D., Rehn, D. A., Reed, E. J. & Salleo, A. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating. ACS Nano 14, 2894–2903 (2020).

    Article  CAS  Google Scholar 

  185. Duerloo, K. A. & Reed, E. J. Structural phase transitions by design in monolayer alloys. ACS Nano 10, 289–297 (2016).

    Article  CAS  Google Scholar 

  186. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    Article  CAS  Google Scholar 

  187. Khazaei, M. et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013).

    Article  CAS  Google Scholar 

  188. Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    Article  CAS  Google Scholar 

  189. Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  CAS  Google Scholar 

  190. Zou, G. et al. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4, 489–499 (2016).

    Article  CAS  Google Scholar 

  191. Mishra, A., Srivastava, P., Mizuseki, H., Lee, K. R. & Singh, A. K. Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study. Phys. Chem. Chem. Phys. 18, 11073–11080 (2016).

    Article  CAS  Google Scholar 

  192. Li, X.-H., Su, X.-Y. & Zhang, R.-Z. Strain-induced band modulation of surface F-functionalized two-dimensional Sc2C. Appl. Surf. Sci. 491, 276–285 (2019).

    Article  CAS  Google Scholar 

  193. Siriwardane, E. M. D., Karki, P., Loh, Y. L. & Çakır, D. Strain–spintronics: modulating electronic and magnetic properties of Hf2MnC2O2 MXene by uniaxial strain. J. Phys. Chem. C 123, 12451–12459 (2019).

    Article  CAS  Google Scholar 

  194. Li, C., Wu, G., Wang, C., Fu, Y. & Wang, B. Tuning electronic and transport properties of MoS2/Ti2C heterostructure by external strain and electric field. Comput. Mater. Sci. 153, 417–423 (2018).

    Article  CAS  Google Scholar 

  195. Yu, X.-f et al. The band gap modulation of monolayer Ti2CO2 by strain. RSC Adv. 5, 30438–30444 (2015).

    Article  CAS  Google Scholar 

  196. Lee, Y., Cho, S. B. & Chung, Y. C. Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect. ACS Appl. Mater. Interfaces 6, 14724–14728 (2014).

    Article  CAS  Google Scholar 

  197. Li, X.-H., Su, X.-Y., Zhang, R.-Z., Xing, C.-H. & Zhu, Z.-L. Pressure-induced band engineering, work function and optical properties of surface F-functionalized Sc2C MXene. J. Phys. Chem. Solids 137, 109218 (2020).

    Article  CAS  Google Scholar 

  198. Balcı, E., Akkuş, Ü. Ö. & Berber, S. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C 5, 5956–5961 (2017).

    Article  Google Scholar 

  199. Pham, K. D. et al. Strain engineering and electric field tunable electronic properties of Ti2CO2 MXene monolayer. Mater. Res. Express 6, 065910 (2019).

    Article  CAS  Google Scholar 

  200. Wyatt, B. C. et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. Condens. Mat. 33, 224002 (2021).

    Article  CAS  Google Scholar 

  201. Deysher, G. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2019).

    Article  Google Scholar 

  202. Dong, L. M., Ye, C., Zheng, L. L., Gao, Z. F. & Xia, F. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics 9, 2125–2145 (2020).

    Article  CAS  Google Scholar 

  203. Urbankowski, P. et al. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9, 17722–17730 (2017).

    Article  CAS  Google Scholar 

  204. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  Google Scholar 

  205. Gouveia, J. D., Viñes, F., Illas, F. & Gomes, J. R. MXenes atomic layer stacking phase transitions and their chemical activity consequences. Phys. Rev. Mater. 4, 054003 (2020).

    Article  CAS  Google Scholar 

  206. Polaki, S. et al. Tribological behavior of hydrogenated DLC film: chemical and physical transformations at nano-scale. Wear 338, 105–113 (2015).

    Article  Google Scholar 

  207. Zia, A. W., Zhou, Z., Shum, P. W. & Li, L. K. Y. The effect of two-step heat treatment on hardness, fracture toughness, and wear of different biased diamond-like carbon coatings. Surf. Coat. Technol. 320, 118–125 (2017).

    Article  CAS  Google Scholar 

  208. Tyagi, A. et al. A critical review of diamond like carbon coating for wear resistance applications. Int. J. Refract. Met. Hard Mater. 78, 107–122 (2019).

    Article  CAS  Google Scholar 

  209. Chen, N. et al. Tribological behavior of HFCVD multilayer diamond film on silicon carbide. Surf. Coat. Technol. 272, 66–71 (2015).

    Article  CAS  Google Scholar 

  210. Wu, S., Kousaka, H., Kar, S., Li, D. & Su, J. Friction and wear performance of bearing ball sliding against diamond-like carbon coatings. Mater. Res. Express 4, 015602 (2017).

    Article  Google Scholar 

  211. Forquin, P., Rossiquet, G., Zinszner, J.-L. & Erzar, B. Microstructure influence on the fragmentation properties of dense silicon carbides under impact. Mech. Mater. 123, 59–76 (2018).

    Article  Google Scholar 

  212. Kuhn, M., Tierney, D. & Simmers, M. Silicon carbide for the modern warfighter. Am. Ceram. Soc. Bull. 96, 38–39 (2017).

    CAS  Google Scholar 

  213. Blum, T., Dresler, B. & Hoffmann, M. Wear-resistant amorphous SiC coatings produced by plasma-enhanced CVD. Surf. Coat. Technol. 116, 1024–1028 (1999).

    Article  Google Scholar 

  214. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    Article  CAS  Google Scholar 

  215. Narayan, J. & Bhaumik, A. Research update: direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air. Appl. Mater. 4, 020701 (2016).

    Article  Google Scholar 

  216. Rathinasabapathy, S., Santhosh, M. & Asokan, M. in Recent Advances in Boron-Containing Materials Ch. 4 (IntechOpen, 2019).

  217. Han, T.-H., Kwon, S.-J., Seo, H.-K. & Lee, T.-W. Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices. 2D Mater. 3, 014003 (2016).

    Article  Google Scholar 

  218. Ho, K.-I. et al. Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics. Sci. Rep. 4, 5893 (2014).

    Article  CAS  Google Scholar 

  219. Sun, C. et al. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6, 2634–2641 (2014).

    Article  CAS  Google Scholar 

  220. Meduri, P. et al. Tunable electrochemical properties of fluorinated graphene. J. Mater. Chem. A 1, 7866–7869 (2013).

    Article  CAS  Google Scholar 

  221. Tadi, K. K., Pal, S. & Narayanan, T. N. Fluorographene based ultrasensitive ammonia sensor. Sci. Rep. 6, 25221 (2016).

    Article  CAS  Google Scholar 

  222. Chia, X., Ambrosi, A., Otyepka, M., Zbořil, R. & Pumera, M. Fluorographites (CFx)n exhibit improved heterogeneous electron-transfer rates with increasing level of fluorination: towards the sensing of biomolecules. Chem. A Eur. J. 20, 6665–6671 (2014).

    Article  CAS  Google Scholar 

  223. Urbanová, V. et al. Thiofluorographene–hydrophilic graphene derivative with semiconducting and genosensing properties. Adv. Mater. 27, 2305–2310 (2015).

    Article  Google Scholar 

  224. Xu, J.-Y. et al. Opening the band gap of graphene via fluorination for high-performance dual-mode photodetector application. ACS Appl. Mater. Interf. 11, 21702–21710 (2019).

    Article  CAS  Google Scholar 

  225. Zheng, Z. et al. Single layer diamond — a new ultrathin 2D carbon nanostructure for mechanical resonator. Carbon 161, 809–815 (2020).

    Article  CAS  Google Scholar 

  226. Nasrollahzadeh, M., Sajjadi, M. & Sajadi, S. M. Functionalized-graphene and graphene oxide: fabrication and application in catalysis. Photoenergy Thin Film. Mater. https://doi.org/10.1002/9781119580546.ch16 (2019).

    Article  Google Scholar 

  227. Fei, Y., Fang, S. & Hu, Y. H. Synthesis, properties and potential applications of hydrogenated graphene. Chem. Eng. J. 161, 125408 (2020).

    Article  Google Scholar 

  228. Wang, Y. et al. Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 24, 4285–4290 (2012).

    Article  CAS  Google Scholar 

  229. Vu, M. C. et al. Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation. Carbon 157, 741–749 (2020).

    Article  CAS  Google Scholar 

  230. Weber, J. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  CAS  Google Scholar 

  231. Gupta, S., Yang, J.-H. & Yakobson, B. I. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 19, 408–414 (2019).

    Article  CAS  Google Scholar 

  232. Gupta, S. N. et al. Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: experiments and theory. Phys. Rev. B 96, 094104 (2017).

    Article  Google Scholar 

  233. Wei, Q. & Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).

    Article  Google Scholar 

  234. Sa, B., Li, Y.-L., Qi, J., Ahuja, R. & Sun, Z. Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C 118, 26560–26568 (2014).

    Article  CAS  Google Scholar 

  235. Zheng, X. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2, 17–25 (2019).

    Article  CAS  Google Scholar 

  236. Cho, S. et al. Phase patterning for Ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  237. Kim, S. et al. Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2. 2D Mater. 4, 024004 (2017).

    Article  Google Scholar 

  238. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  239. Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    Article  CAS  Google Scholar 

  240. Li, A., Pan, J., Dai, X. & Ouyang, F. Electrical contacts of coplanar 2H/1T′ MoTe2 monolayer. J. Appl. Phys. 125, 075104 (2019).

    Article  Google Scholar 

  241. Rehn, D. A., Li, Y. & Reed, E. J. Refrigeration in 2D: electrostaticaloric effect in monolayer materials. Phys. Rev. Mater. 2, 114004 (2018).

    Article  CAS  Google Scholar 

  242. Li, X. et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano 14, 541–551 (2020).

    Article  CAS  Google Scholar 

  243. Byeon, A. et al. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochim. Acta 258, 979–987 (2017).

    Article  CAS  Google Scholar 

  244. Guo, Z., Miao, N., Zhou, J., Sa, B. & Sun, Z. Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5, 978–984 (2017).

    Article  CAS  Google Scholar 

  245. Simpson, R. E. The changing phase of data storage. Nat. Nanotechnol. 14, 643–644 (2019).

    Article  CAS  Google Scholar 

  246. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  247. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Article  CAS  Google Scholar 

  248. Yang, X., Sa, B., Zhan, H. & Sun, Z. Electric field-modulated data storage in bilayer InSe. J. Mater. Chem. C 5, 12228–12234 (2017).

    Article  CAS  Google Scholar 

  249. Yoshiasa, A., Murai, Y., Ohtaka, O. & Katsura, T. Detailed structures of hexagonal diamond (lonsdaleite) and wurtzite-type BN. Jpn J. Appl. Phys. 42, 1694 (2003).

    Article  CAS  Google Scholar 

  250. Di Pietro, P. et al. Emergent Dirac carriers across a pressure-induced Lifshitz transition in black phosphorus. Phys. Rev. B 98, 165111 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, MSE Division under award no. DE-SC0018924. The authors also thank the support of the US Army Research Office under award no. W911NF2020116.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elisa Riedo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Luiz Gustavo Cancado, Pavel Sorokin and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavini, F., Rejhon, M. & Riedo, E. Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nat Rev Mater 7, 814–832 (2022). https://doi.org/10.1038/s41578-022-00451-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00451-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing