Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics of the epigenetic landscape during the maternal-to-zygotic transition

Abstract

A remarkable epigenetic remodelling process occurs shortly after fertilization, which restores totipotency to the zygote. This involves global DNA demethylation, chromatin remodelling, genome spatial reorganization and substantial transcriptional changes. Key to these changes is the transition from the maternal environment of the oocyte to an embryonic-driven developmental expression programme, a process termed the maternal-to-zygotic transition (MZT). Zygotic genome activation occurs predominantly at the two-cell stage in mice and the eight-cell stage in humans, yet the dynamics of its control are still mostly obscure. In recent years, partly due to single-cell and low-cell number epigenomic studies, our understanding of the epigenetic and chromatin landscape of preimplantation development has improved considerably. In this Review, we discuss the latest advances in the study of the MZT, focusing on DNA methylation, histone post-translational modifications, local chromatin structure and higher-order genome organization. We also discuss key mechanistic studies that investigate the mode of action of chromatin regulators, transcription factors and non-coding RNAs during preimplantation development. Finally, we highlight areas requiring additional research, as well as new technological advances that could assist in eventually completing our understanding of the MZT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of transcription and DNA methylation dynamics during mouse preimplantation development.
Fig. 2: Dynamics of chromatin landscapes during preimplantation development.
Fig. 3: Regulation of the maternal-to-zygotic transition by histone-modifying enzymes and non-coding RNAs.
Fig. 4: Models of event hierarchies leading to the major wave of ZGA.

Similar content being viewed by others

References

  1. Wennekamp, S., Mesecke, S., Nédélec, F. & Hiiragi, T. A self-organization framework for symmetry breaking in the mammalian embryo. Nat. Rev. Mol. Cell Biol. 14, 452–459 (2013).

    Article  PubMed  CAS  Google Scholar 

  2. Leung, C. Y. & Zernicka-Goetz, M. Mapping the journey from totipotency to lineage specification in the mouse embryo. Curr. Opin. Genet. Dev. 34, 71–76 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Zhou, L.-Q. & Dean, J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 25, 82–91 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chazaud, C. & Yamanaka, Y. Lineage specification in the mouse preimplantation embryo. Development 143, 1063–1074 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Li, L., Lu, X. & Dean, J. The maternal to zygotic transition in mammals. Mol. Aspects Med. 34, 919–938 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Walser, C. B. & Lipshitz, H. D. Transcript clearance during the maternal-to-zygotic transition. Curr. Opin. Genet. Dev. 21, 431–443 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Lee, M. T., Bonneau, A. R. & Giraldez, A. J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jukam, D., Shariati, S. A. M. & Skotheim, J. M. Zygotic genome activation in vertebrates. Dev. Cell 42, 316–332 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. H. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Park, S.-J. et al. Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev. 27, 2736–2748 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Abe, K.-I. et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J. 34, 1523–1537 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nothias, J. Y., Miranda, M. & DePamphilis, M. L. Uncoupling of transcription and translation during zygotic gene activation in the mouse. EMBO J. 15, 5715–5725 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zeng, F., Baldwin, D. A. & Schultz, R. M. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Ram, P. T. & Schultz, R. M. Reporter gene expression in G2 of the 1-cell mouse embryo. Dev. Biol. 156, 552–556 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. Bouniol, C., Nguyen, E. & Debey, P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp. Cell Res. 218, 57–62 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Majumder, S. & DePamphilis, M. L. A unique role for enhancers is revealed during early mouse development. Bioessays 17, 879–889 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. Vassena, R. et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138, 3699–3709 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dobson, A. T. et al. The unique transcriptome through day 3 of human preimplantation development. Hum. Mol. Genet. 13, 1461–1470 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Tesarík, J., Kopecný, V., Plachot, M. & Mandelbaum, J. Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization. Hum. Reprod 2, 127–136 (1987).

    Article  PubMed  Google Scholar 

  28. Niakan, K. K., Han, J., Pedersen, R. A., Simon, C. & Pera, R. A. R. Human pre-implantation embryo development. Development 139, 829–841 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Iurlaro, M., Meyenn, von, F. & Reik, W. DNA methylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev. 43, 101–109 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Svoboda, P. Long and small noncoding RNAs during oocyte-to-embryo transition in mammals. Biochem. Soc. Trans. 45, 1117–1124 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Gifford, W. D., Pfaff, S. L. & Macfarlan, T. S. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23, 218–226 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gerdes, P., Richardson, S. R., Mager, D. L. & Faulkner, G. J. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 17, 100 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Messerschmidt, D. M., Knowles, B. B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hackett, J. A. & Surani, M. A. DNA methylation dynamics during the mammalian life cycle. Phil. Trans. R. Soc. B Biol Sci. 368, 20110328 (2013).

    Article  CAS  Google Scholar 

  37. Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–838 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  PubMed  Google Scholar 

  41. Maenohara, S. et al. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet. 13, e1007042 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim, K.-H. & Lee, K.-A. Maternal effect genes: Findings and effects on mouse embryo development. Clin. Exp. Reproductive Med. 41, 47–61 (2014).

    Article  Google Scholar 

  43. Smallwood, S. A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Branco, M. R. et al. Maternal DNA methylation regulates early trophoblast development. Dev. Cell 36, 152–163 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Guo, F. et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15, 447–459 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Petrussa, L., van de Velde, H. & De Rycke, M. Similar kinetics for 5-methylcytosine and 5-hydroxymethylcytosine during human preimplantation development in vitro. Mol. Reprod. Dev. 83, 594–605 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Wossidlo, M. et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29, 1877–1888 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Peat, J. R. et al. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep. 9, 1990–2000 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Santos, F. et al. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenet. Chromatin 6, 39 (2013).

    Article  CAS  Google Scholar 

  53. Amouroux, R. et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18, 225–233 (2016). Uses ultrasensitive liquid chromatography-mass spectrometry (LC-MS)-based quantitation to quantify cytosine modifications in oocytes, staged zygotes and two-cell embryos.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. Dean, W. et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13734–13738 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shen, L. et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459–470 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mahadevan, S. et al. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci. Rep. 7, 44667 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gu, T.-P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  PubMed  CAS  Google Scholar 

  59. Iqbal, K., Jin, S.-G., Pfeifer, G. P. & Szabó, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241 (2011).

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Santos, F., Peters, A. H., Otte, A. P., Reik, W. & Dean, W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236 (2005).

    Article  PubMed  CAS  Google Scholar 

  63. Zhu, C. et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20, 720–731.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  64. Mooijman, D., Dey, S. S., Boisset, J.-C., Crosetto, N. & van Oudenaarden, A. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol. 34, 852–856 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Hatanaka, Y. et al. GSE is a maternal factor involved in active DNA demethylation in zygotes. PLoS ONE 8, e60205 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hajkova, P. et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329, 78–82 (2010).

    Article  PubMed  CAS  Google Scholar 

  67. Ladstätter, S. & Tachibana-Konwalski, K. A. Surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167, 1774–1787.e13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lawrence, M., Daujat, S. & Schneider, R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 32, 42–56 (2016).

    Article  PubMed  CAS  Google Scholar 

  69. Harr, J. C., Gonzalez-Sandoval, A. & Gasser, S. M. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep. 17, 139–155 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    Article  PubMed  CAS  Google Scholar 

  71. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016). Describes genome-wide maps of accessible chromatin in mouse preimplantation development using ATAC-seq.

    Article  PubMed  CAS  Google Scholar 

  73. Lu, F. et al. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388 (2016). Describes genome-wide maps of accessible chromatin in mouse preimplantation development using low-input DHS mapping.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

    Article  PubMed  CAS  Google Scholar 

  75. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).References 71 and 74–76 profile the genome-wide distribution of H3K4me3 (71, 74 and 75), H3K27me3 (74 and 76) and H3K27ac (71) during preimplantation development.

    Article  PubMed  CAS  Google Scholar 

  77. Hanna, C. et al. MLL2 conveys transcription-independent H3K4me3 in the oocyte. Nat. Struct. Mol. Biol. 25, 73–82 (2018).

    Article  PubMed  CAS  Google Scholar 

  78. Rando, O. J. Intergenerational transfer of epigenetic information in sperm. Cold Spring Harb. Perspect. Med. 6, a022988 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Burton, A. & Torres-Padilla, M.-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–735 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Zenk, F. et al. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357, 212–216 (2017).

    Article  PubMed  CAS  Google Scholar 

  81. Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder nucleosomes underlie germline-to- embryo DNA methylation reprogramming. Cell 172, 993–1006.e13 (2018).

  82. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017). Describes the profiling of allele-specific DNaseI hypersensitive sites in mouse zygotes and morula embryos and their integration with DNA methylation and allele-specific H3K27me3 data.

    Article  PubMed  CAS  Google Scholar 

  83. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 487, 57 (2017).

    Google Scholar 

  84. Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. Hübner, M. R., Eckersley-Maslin, M. A. & Spector, D. L. Chromatin organization and transcriptional regulation. Curr. Opin. Genet. Dev. 23, 89–95 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Borsos, M. & Torres-Padilla, M.-E. Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev. 30, 611–621 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tan, J.-H. et al. Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol. Hum. Reprod. 15, 1–9 (2009).

    Article  PubMed  CAS  Google Scholar 

  91. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381.e20 (2017).

    Article  PubMed  CAS  Google Scholar 

  93. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

    Article  PubMed  CAS  Google Scholar 

  94. Jung, Y. H. et al. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep. 18, 1366–1382 (2017).References 91–94 describe the development of Hi-C-based methods to profile chromatin architecture in mouse sperm, oocytes and early embryos.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription. Cell 169, 216–228.e19 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  PubMed  CAS  Google Scholar 

  97. Lepikhov, K. & Walter, J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev. Biol. 4, 12 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mayer, W., Smith, A., Fundele, R. & Haaf, T. Spatial separation of parental genomes in preimplantation mouse embryos. J. Cell Biol. 148, 629–634 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Li, L., Zheng, P. & Dean, J. Maternal control of early mouse development. Development 137, 859–870 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tong, Z. B. et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Esposito, G. et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol. Cell. Endocrinol. 273, 25–31 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Yurttas, P. et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135, 2627–2636 (2008).

    Article  PubMed  CAS  Google Scholar 

  103. Li, L., Baibakov, B. & Dean, J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zheng, P. & Dean, J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc. Natl Acad. Sci. USA 106, 7473–7478 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tashiro, F. et al. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells 15, 813–828 (2010).

    Article  PubMed  CAS  Google Scholar 

  106. Yu, X.-J. et al. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat. Commun. 5, 4887 (2014).

    Article  PubMed  CAS  Google Scholar 

  107. Tsai, T.-C. et al. Granzyme G is expressed in the two-cell stage mouse embryo and is required for the maternal-zygotic transition. BMC Dev. Biol. 10, 88 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. de Vries, W. N. et al. Maternal beta-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004).

    Article  PubMed  CAS  Google Scholar 

  109. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4, 921–928 (2002).

    Article  PubMed  CAS  Google Scholar 

  110. Roest, H. P. et al. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol. Cell. Biol. 24, 5485–5495 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sekiguchi, S. et al. Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am. J. Pathol. 169, 1722–1729 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Yu, C. et al. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 342, 1518–1521 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Mtango, N. R. et al. Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J. Cell. Physiol. 227, 1592–1603 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Yang, Y. et al. The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. EMBO Rep. 18, 205–216 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Gurtu, V. E. et al. Maternal effect for DNA mismatch repair in the mouse. Genetics 160, 271–277 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Xu, Q. et al. Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development 142, 3943–3953 (2015).

    Article  PubMed  CAS  Google Scholar 

  117. Hara, K. T. et al. Cyclin A2-CDK2 regulates embryonic gene activation in 1-cell mouse embryos. Dev. Biol. 286, 102–113 (2005).

    Article  PubMed  CAS  Google Scholar 

  118. Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120 (2008).

    Article  PubMed  CAS  Google Scholar 

  119. Lykke-Andersen, K. et al. Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol. Biol. Cell 19, 4383–4392 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Yu, C. et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat. Struct. Mol. Biol. 23, 387–394 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Wu, X. et al. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191 (2003).

    Article  PubMed  CAS  Google Scholar 

  124. Narducci, M. G. et al. TCL1 participates in early embryonic development and is overexpressed in human seminomas. Proc. Natl Acad. Sci. USA 99, 11712–11717 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kim, K.-H. et al. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS ONE 6, e23304 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Xu, Y.-W. et al. Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J. Cell Sci. 130, 3297–3307 (2017).

    Article  PubMed  CAS  Google Scholar 

  127. Ma, J., Zeng, F., Schultz, R. M. & Tseng, H. Basonuclin: a novel mammalian maternal-effect gene. Development 133, 2053–2062 (2006).

    Article  PubMed  CAS  Google Scholar 

  128. Christians, E., Davis, A. A., Thomas, S. D. & Benjamin, I. J. Maternal effect of Hsf1 on reproductive success. Nature 407, 693–694 (2000).

    Article  PubMed  CAS  Google Scholar 

  129. Torres-Padilla, M.-E. & Zernicka-Goetz, M. Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J. Cell Biol. 174, 329–338 (2006). Identifies TIF1α as one of the first transcription factors with a role in zygotic genome activation in mouse embryos.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wan, L.-B. et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135, 2729–2738 (2008).

    Article  PubMed  CAS  Google Scholar 

  131. Pan, H. Sox2 modulates reprogramming of gene expression in two-cell mouse embryos. Biol. Reprod. 85, 409–416 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Arakawa, T. et al. Stella controls chromocenter formation through regulation of Daxx expression in 2-cell embryos. Biochem. Biophys. Res. Commun. 466, 60–65 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Huang, Y. et al. STELLA modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. eLife 6, e22345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kim, J. et al. Maternal Setdb1 is required for meiotic progression and preimplantation development in mouse. PLoS Genet. 12, e1005970 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Yu, C. et al. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. Cell Res. 26, 275–287 (2016). Uses a combination of mouse models to show that maternal stores of YAP1 are essential for zygotic genome activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 487, 57 (2017).

    Google Scholar 

  137. Ramos, S. B. V. et al. The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131, 4883–4893 (2004).

    Article  PubMed  CAS  Google Scholar 

  138. Metchat, A. et al. Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. J. Biol. Chem. 284, 9521–9528 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Li, X. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Park, M.-W. et al. Associations among Sebox and other MEGs and its effects on early embryogenesis. PLoS ONE 10, e0115050 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kim, K.-H., Kim, E.-Y. & Lee, K.-A. SEBOX is essential for early embryogenesis at the two-cell stage in the mouse. Biol. Reprod. 79, 1192–1201 (2008).

    Article  PubMed  CAS  Google Scholar 

  142. Foygel, K. et al. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS ONE 3, e4109 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bortvin, A., Goodheart, M., Liao, M. & Page, D. C. Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Biol. 4, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Payer, B. et al. Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117 (2003).

    Article  PubMed  CAS  Google Scholar 

  145. Kim, K.-H. et al. The miR-125 family is an important regulator of the expression and maintenance of maternal effect genes during preimplantational embryo development. Open Biol. 6, 160181 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754 (2006). Identifies BRG1 as one of the earliest maternal-effect chromatin proteins that have phenotypes in zygotic genome activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Posfai, E. et al. Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hu, J. et al. Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev. Dyn. 239, 407–424 (2010).

    Article  PubMed  CAS  Google Scholar 

  149. Andreu-Vieyra, C. V. et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Aoshima, K., Inoue, E., Sawa, H. & Okada, Y. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep. 16, 803–812 (2015). Uses a series of histone K-M mutants to demonstrate the importance of H3K4 methylation, and consequently of MLL3 and MLL4, in minor zygotic genome activation in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Reinhardt, S. et al. Setd1b, encoding a histone 3 lysine 4 methyltransferase, is a maternal effect gene required for the oogenic gene expression program. Development 144, 2606–2617 (2017).

    Article  PubMed  CAS  Google Scholar 

  152. Ancelin, K. et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. eLife 5, e08851 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Wasson, J. A. et al. Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally. eLife 5, e08848 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sankar, A. et al. Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development 144, 3264–3277 (2017).

    Article  PubMed  CAS  Google Scholar 

  155. Yang, L. et al. The maternal effect genes UTX and JMJD3 play contrasting roles in mus musculus preimplantation embryo development. Sci. Rep. 6, 26711 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Eid, A., Rodriguez-Terrones, D., Burton, A. & Torres-Padilla, M.-E. SUV4-20 activity in the preimplantation mouse embryo controls timely replication. Genes Dev. 30, 2513–2526 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. La Fuente, De,R. et al. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275, 447–458 (2004).

    Article  CAS  Google Scholar 

  158. Burns, K. H. et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–636 (2003).

    Article  PubMed  CAS  Google Scholar 

  159. Erhardt, S. et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248 (2003).

    Article  PubMed  CAS  Google Scholar 

  160. Philipps, D. L. et al. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev. Biol. 317, 72–82 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    Article  PubMed  CAS  Google Scholar 

  162. Wang, J. et al. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 17, 1452–1470 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Hamazaki, N., Uesaka, M., Nakashima, K., Agata, K. & Imamura, T. Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development 142, 910–920 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 11, 778 (2017). Uses different epigenetic targeting approaches to investigate the link between LINE-1 expression and chromatin accessibility in early embryos.

    Google Scholar 

  165. Probst, A. V., Santos, F., Reik, W., Almouzni, G. & Dean, W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116, 403–415 (2007).

    Article  PubMed  Google Scholar 

  166. Wongtawan, T., Taylor, J. E., Lawson, K. A., Wilmut, I. & Pennings, S. Histone H4K20me3 and HP1α are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. J. Cell Sci. 124, 1878–1890 (2011).

    Article  PubMed  CAS  Google Scholar 

  167. Hatanaka, Y. et al. Histone H3 methylated at arginine 17 is essential for reprogramming the paternal genome in zygotes. Cell Rep. 20, 2756–2765 (2017).

    Article  PubMed  CAS  Google Scholar 

  168. Inoue, A. & Zhang, Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21, 609–616 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Nashun, B. et al. Continuous histone replacement by hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis. Mol. Cell 60, 611–625 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Lin, C.-J., Koh, F. M., Wong, P., Conti, M. & Ramalho-Santos, M. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev. Cell 30, 268–279 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Akiyama, T., Suzuki, O., Matsuda, J. & Aoki, F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet. 7, e1002279 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Santenard, A. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853–862 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Zhao, W. et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152, 1037–1050 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Franke, V. et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 27, 1384–1394 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Beraldi, R., Pittoggi, C., Sciamanna, I., Mattei, E. & Spadafora, C. Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol. Reprod. Dev. 73, 279–287 (2006).

    Article  PubMed  CAS  Google Scholar 

  177. Rinn, J. & Guttman, M. RNA and dynamic nuclear organization. Science 345, 1240–1241 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Bergmann, J. H. & Spector, D. L. Long non-coding RNAs: modulators of nuclear structure and function. Curr. Opin. Cell Biol. 26, 10–18 (2014).

    Article  PubMed  CAS  Google Scholar 

  179. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  180. Zhang, X. et al. Systematic identification and characterization of long non-coding RNAs in mouse mature sperm. PLoS ONE 12, e0173402 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Qiu, J.-J., Ren, Z.-R. & Yan, J.-B. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data. Oncotarget 7, 61215–61228 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Lv, J. et al. Identification of 4438 novel lincRNAs involved in mouse pre-implantation embryonic development. Mol. Genet. Genom. 290, 685–697 (2014).

    Article  CAS  Google Scholar 

  183. Zhang, K., Huang, K., Luo, Y. & Li, S. Identification and functional analysis of long non-coding RNAs in mouse cleavage stage embryonic development based on single cell transcriptome data. BMC Genomics 15, 845 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Bouckenheimer, J. et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum. Reprod. Update 23, 19–40 (2016).

    Article  PubMed  Google Scholar 

  185. Han, L. et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat. Genet. 50, 432–442 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  186. Whiddon, J. L., Langford, A. T., Wong, C.-J., Zhong, J. W. & Tapscott, S. J. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 25, 4577 (2017).References 83, 136 & 186 identify the DUX family of transcription factors as regulators of cleavage stage genes in mouse and human embryos.

    Google Scholar 

  187. Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 528, 142 (2017).

    Google Scholar 

  188. Davis, W., De Sousa, P. A. & Schultz, R. M. Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation. Dev. Biol. 174, 190–201 (1996).

    Article  PubMed  CAS  Google Scholar 

  189. Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G. & Reik, W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 17, 72 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Hadjantonakis, A.-K. & Arias, A. M. Single-cell approaches: Pandora’s box of developmental mechanisms. Dev. Cell 38, 574–578 (2016).

    Article  PubMed  CAS  Google Scholar 

  191. Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: Recording the past and predicting the future. Science 358, 69–75 (2017).

    Article  PubMed  CAS  Google Scholar 

  192. Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Biase, F. H., Cao, X. & Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 24, 1787–1796 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Sheng, K., Cao, W., Niu, Y., Deng, Q. & Zong, C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat. Methods 14, 267–270 (2017).

    Article  PubMed  CAS  Google Scholar 

  196. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).

    Article  PubMed  CAS  Google Scholar 

  197. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    Article  PubMed  CAS  Google Scholar 

  200. Neri, F. et al. Single-Base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep. 10, 674–683 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  PubMed  CAS  Google Scholar 

  206. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  PubMed  CAS  Google Scholar 

  211. Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, 1127 (2017).

    Article  Google Scholar 

  212. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Clark, S. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

  214. Cui, W. et al. Towards functional annotation of the preimplantation transcriptome: an RNAi screen in mammalian embryos. Sci. Rep. 6, 37396 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Qvist, R., Blackwell, L. F., Bourne, H. & Brown, J. B. Development of mouse ovarian follicles from primary to preovulatory stages in vitro. J. Reprod. Fertil. 89, 169–180 (1990).

    Article  PubMed  CAS  Google Scholar 

  216. Spears, N., Boland, N. I., Murray, A. A. & Gosden, R. G. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum. Reprod. 9, 527–532 (1994).

    Article  PubMed  CAS  Google Scholar 

  217. Liu, J., Van der Elst, J., Van den Broecke, R. & Dhont, M. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol. Reprod. 64, 171–178 (2001).

    Article  PubMed  CAS  Google Scholar 

  218. Cortvrindt, R., Smitz, J. & Van Steirteghem, A. C. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum. Reprod. 11, 2656–2666 (1996).

    Article  PubMed  CAS  Google Scholar 

  219. O’Brien, M. J., Pendola, J. K. & Eppig, J. J. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol. Reprod. 68, 1682–1686 (2003).

    Article  PubMed  CAS  Google Scholar 

  220. Hayashi, K., Hikabe, O., Obata, Y. & Hirao, Y. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat. Protoc. 12, 1733–1744 (2017).

    Article  PubMed  CAS  Google Scholar 

  221. Pfender, S. et al. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524, 239–242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 292, 154–397 (2017).

    Google Scholar 

  223. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

    Article  PubMed  CAS  Google Scholar 

  226. Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Xin, L., Oda, M., Qian, Y. & Ko, M. S. H. Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Res. 22, 307–318 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Choi, Y. J. et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 355, eaag1927 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  229. Dan, J. et al. Zscan4 inhibits maintenance DNA methylation to facilitate telomere elongation in mouse embryonic stem cells. Cell Rep. 20, 1936–1949 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Okamoto, Y. et al. DNA methylation dynamics in mouse preimplantation embryos revealed by mass spectrometry. Sci. Rep. 6, 19134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Carlson, L. L., Page, A. W. & Bestor, T. H. Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev. 6, 2536–2541 (1992).

    Article  PubMed  CAS  Google Scholar 

  232. Boskovic, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Hisada, K. et al. RYBP represses endogenous retroviruses and preimplantation- and germ line-specific genes in mouse embryonic stem cells. Mol. Cell. Biol. 32, 1139–1149 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Maksakova, I. A. et al. Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenet. Chromatin 6, 15 (2013).

    Article  CAS  Google Scholar 

  235. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  PubMed  CAS  Google Scholar 

  236. Ishiuchi, T. & Torres-Padilla, M.-E. Towards an understanding of the regulatory mechanisms of totipotency. Curr. Opin. Genet. Dev. 23, 512–518 (2013).

    Article  PubMed  CAS  Google Scholar 

  237. Schlesinger, S. & Goff, S. P. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol. 35, 770–777 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Dean, C. Hanna, F. Santos, I. Herraez and T. Lohoff for careful reading of the manuscript. The authors apologize to all authors of studies they could not cite given the concise nature of this Review. M.A.E.-M. is supported by a Marie Sklodowska-Curie Individual Fellowship, and C.A.-C. is supported by a postgraduate award by the Biotechnology and Biological Sciences Research Council (BBSRC). The laboratory of W.R. is supported by the BBSRC (BB/K010867/1), the Wellcome Trust (095645/Z/ 11/Z), EU BLUEPRINT and EpiGeneSys.

Author information

Authors and Affiliations

Authors

Contributions

M.A.E.-M. and C.A.-C. researched data for the article; M.A.E.-M., C.A.-C. and W.R. made substantial contributions to the discussion of content; M.A.E.-M. and C.A.-C. wrote the article and M.A.E.-M., C.A.-C. and W.R. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Melanie A. Eckersley-Maslin, Celia Alda-Catalinas or Wolf Reik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Molecular Cell Biology thanks A. Klungland and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Electronic supplementary material

Glossary

Zygote

Diploid, one-cell totipotent embryo formed at fertilization between the egg and sperm. The zygote represents the earliest developmental stage of an embryo.

Pronuclei

Physically separated paternal and maternal nuclei present in the zygote after fertilization, before pronuclear syngamy and the first cleavage division.

Pronuclear syngamy

Process in which the paternal and maternal pronuclei come together in the zygote.

Totipotent

Refers to the ability of a cell to divide and differentiate into any cell type of both embryonic and extra-embryonic origin.

Cleavage divisions

Cell divisions occurring from the zygote to the morula stages, which take place in the absence of cell growth. The progressive decrease in blastomere size with each subsequent division means the net size of the embryo does not change.

Blastocyst

Stage in mammalian preimplantation development immediately before implantation that contains cells arranged in a ball with a central cavity. In mice, at embryonic day 3.5, the blastomeres are located in the inner cell mass or the extra-embryonic trophectoderm.

Pluripotent

Refers to a cell with the developmental capacity to generate any of the three germ layers of the embryo proper (endoderm, ectoderm and mesoderm).

Small non-coding RNAs

(sncRNAs). Short (20–30 nucleotides), non-coding RNAs that can be produced from various precursors and form various classes, including those involved in epigenetic and post-transcriptional gene silencing such as microRNAs.

Long non-coding RNAs

(lncRNAs). Transcripts, typically longer than 200 nucleotides in length, that are not translated into proteins or that lack an open reading frame.

Gastrulation

Stage of early embryonic development in which the blastula is reorganized into a trilaminar structure containing the three germ layers (ectoderm, mesoderm and endoderm).

Maternal-effect genes

(MEGs). Genes expressed, although not necessarily exclusively, in the female germline whose function is essential for embryonic development. Altering the expression of MEGs in the oocyte before fertilization causes developmental defects in the embryo.

Imprinting

Epigenetic phenomenon driven by DNA methylation, in which certain genes are solely expressed from the paternal or the maternal allele. Imprinted genes largely retain their DNA methylation status during epigenetic reprogramming in the early embryo.

Subcortical maternal complex

(SCMC). Cytoplasmic multiprotein complex essential for preimplantation development. It is localized at the subcortex of oocytes and early embryos and excluded from regions of cell-to-cell contact in the cleavage-stage embryo.

Pronuclear stage

The zygote goes through five pronuclear stages, which correlate to cell cycle phases: PN0–PN2 correspond to G1 phase, PN3 and PN4 to S phase and PN5 to G2 phase.

Metaphase II (MII) oocyte

Mature oocyte after ovulation that is arrested in the metaphase of the second meiotic division. MII oocytes have a visible polar body and can be fertilized.

Polycomb repressive complex 2

(PRC2). Complex of evolutionarily conserved proteins primarily catalysing histone H3 Lys27 trimethylation; involved in transcription silencing.

Inner cell mass

(ICM). Group of pluripotent cells in the early mammalian blastocyst (embryonic day 3.5 in mice) able to give rise to all cell types in the embryo, as well as the extra-embryonic primitive endoderm.

Morula

Spherical, solid and polarized cellular mass of blastomeres formed during mammalian preimplantation development after compaction of the eight-cell embryo and before formation of the blastocyst.

Non-surrounded nucleolus

Morphology of germinal vesicle oocytes without a condensed chromatin ring surrounding the nucleolus. Non-surrounded nucleolus oocytes are transcriptionally active.

Surrounded nucleolus

Morphology of germinal vesicle oocytes with a condensed chromatin ring surrounding the nucleolus. Surrounded nucleolus oocytes are transcriptionally quiescent.

Germinal vesicle oocytes

Immature oocytes arrested in the metaphase of the first meiotic division before ovulation. They have a nucleus called a germinal vesicle, which is clearly visible under a light microscope.

Protamines

Small arginine-rich nuclear proteins present in mature sperm, which largely replace histones to allow denser DNA packaging.

Zona pellucida

Specialized extracellular layer of glycoproteins surrounding the plasma membrane of mammalian oocytes. Also known as the egg coat or pellucid zone. It is vital both before and after fertilization.

Polyspermy

Abnormal fertilization phenomenon in which the oocyte is fertilized by more than one spermatozoon, generally resulting in an unviable embryo.

Morpholino

Synthetic oligomer used for gene knockdown. It undergoes base pairing with complementary RNA and inhibits translation. Morpholino bases are attached to a backbone of methylene morpholine rings linked through phosphordiamidate groups instead of phosphates.

Parthenogenetic embryos

Embryos originated from a metaphase II oocyte in the absence of fertilization from sperm. In mammals, parthenogenetic embryos have severe developmental abnormalities and are generally non-viable.

Chromocenter

Large cluster of constitutive heterochromatin visualized in the interphase nucleus as a densely staining region. In the mouse, chromocenter formation first occurs in the two-cell embryo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckersley-Maslin, M.A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 19, 436–450 (2018). https://doi.org/10.1038/s41580-018-0008-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0008-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing