Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology

Abstract

‘Reactive oxygen species’ (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.–. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.– and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of superoxide and hydrogen peroxide and their relation to redox signalling.
Fig. 2: Redox interactome of hydrogen peroxide and superoxide.

Similar content being viewed by others

References

  1. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  PubMed  CAS  Google Scholar 

  2. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Halliwell, B., Gutteridge, J. M. C. Free Radicals in Biology and Medicine 5th edn (Oxford Univ. Press, 2015). This work is an essential textbook for everyone studying redox biology.

  5. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Jones, D. P. & Sies, H. The redox code. Antioxid. Redox. Signal. 23, 734–746 (2015). This work is a comprehensive review of the underlying principles of redox organization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Egea, J. et al. European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox. Biol. 13, 94–162 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Parvez, S., Long, M. J. C., Poganik, J. R. & Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798–8888 (2018). This work is a comprehensive review of the role of electrophiles in redox biology.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Murphy, M. P. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brandes, R. P., Rezende, F. & Schröder, K. Redox regulation beyond ROS: why ROS should not be measured as often. Circ. Res. 123, 326–328 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sies, H. & Chance, B. The steady state level of catalase Compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11, 172–176 (1970). This paper establishes H2O2 as a physiologically occurring metabolite in eukaryotic cells.

    Article  PubMed  CAS  Google Scholar 

  14. Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. Forman, H. J., Bernardo, A. & Davies, K. J. A. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 603, 48–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Stöcker, S., Van, L. K., Mijuskovic, A. & Dick, T. P. The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid. Redox Signal. 28, 558–573 (2018). This paper describes how redox signals are transmitted by protein redox relays.

    Article  PubMed  Google Scholar 

  17. van Dam, L. et al. The human 2-Cys peroxiredoxins form widespread, cysteine-dependent- and isoform-specific protein–protein interactions. Antioxid. (Basel) https://doi.org/10.3390/antiox10040627 (2021).

    Article  Google Scholar 

  18. Forman, H. J., Ursini, F. & Maiorino, M. An overview of mechanisms of redox signaling. J. Mol. Cell Cardiol. 73, 2–9 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Wensien, M. et al. A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Nature 593, 460–464 (2021).

    Article  PubMed  CAS  Google Scholar 

  20. Cortese-Krott, M. M. et al. The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid. Redox Signal. 27, 684–712 (2017). This paper describes how reactive species react with themselves and their targets.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Malard, E., Valable, S., Bernaudin, M., Pérès, E. & Chatre, L. The reactive species interactome in the brain. Antioxid. Redox Signal. 35, 1176–1206 (2021).

    Article  PubMed  CAS  Google Scholar 

  22. Buettner, G. R. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer. Agents Med. Chem. 11, 341–346 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lushchak, O. V., Piroddi, M., Galli, F. & Lushchak, V. I. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep. 19, 8–15 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. Lillig, C. H. et al. Characterization of human glutaredoxin 2 as iron–sulfur protein: a possible role as redox sensor. Proc. Natl Acad. Sci. USA 102, 8168–8173 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, Y., Branicky, R., Noë, A. & Hekimi, S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Singh, C. K. et al. The role of sirtuins in antioxidant and redox signaling. Antioxid. Redox Signal. 28, 643–661 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sun, Y. et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Herb, M., Gluschko, A. & Schramm, M. Reactive oxygen species: not omnipresent but important in many locations. Front. Cell Dev. Biol. 9, 716406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Santolini, J., Wootton, S. A., Jackson, A. A. & Feelisch, M. The redox architecture of physiological function. Curr. Opin. Physiol. 9, 34–47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nordzieke, D. E. & Medraño-Fernandez, I. The plasma membrane: a platform for intra- and intercellular redox signaling. Antioxidants 7, 7110168 (2018).

    Article  Google Scholar 

  32. Schroeder, K. NADPH oxidases: current aspects and tools. Redox Biol. 34, 101512 (2020).

    Article  CAS  Google Scholar 

  33. Zhang, Y. & Wong, H. S. Are mitochondria the main contributor of reactive oxygen species in cells? J. Exp. Biol. 224, 221606 (2021).

    Article  Google Scholar 

  34. Hosogi, S. et al. Plasma membrane anchored nanosensor for quantifying endogenous production of H2O2 in living cells. Biosens. Bioelectron. 179, 113077 (2021).

    Article  PubMed  CAS  Google Scholar 

  35. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009). This paper describes how mitochondria produce ROS.

    Article  PubMed  CAS  Google Scholar 

  36. Brand, M. D. Riding the tiger — physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit. Rev. Biochem. Mol. Biol. 55, 592–661 (2020).

    Article  PubMed  CAS  Google Scholar 

  37. Mailloux, R. J. An update on methods and approaches for interrogating mitochondrial reactive oxygen species production. Redox Biol. 45, 102044 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia–reperfusion injury. Cell Metab. 23, 254–263 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Cox, A. G., Winterbourn, C. C. & Hampton, M. B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313–325 (2009).

    Article  PubMed  Google Scholar 

  40. Bolduc, J. et al. Peroxiredoxins wear many hats: factors that fashion their peroxide sensing personalities. Redox Biol. 42, 101959 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pak, V. V. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31, 642–653 (2020). This paper describes the most recent version of HyPer probes and reveals new details of mitochondrial H2O2 transport.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Malinouski, M., Zhou, Y., Belousov, V. V., Hatfield, D. L. & Gladyshev, V. N. Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 6, e14564 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Walker, C. L., Pomatto, L. C. D., Tripathi, D. N. & Davies, K. J. A. Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol. Rev. 98, 89–115 (2018). This work is a comprehensive review of peroxisomal redox regulation.

    Article  PubMed  CAS  Google Scholar 

  44. Fransen, M. & Lismont, C. Redox signaling from and to peroxisomes: progress, challenges, and prospects. Antioxid. Redox Signal. 30, 95–112 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Schrader, M., Kamoshita, M. & Islinger, M. Organelle interplay–peroxisome interactions in health and disease. J. Inherit. Metab. Dis. 43, 71–89 (2020).

    Article  PubMed  Google Scholar 

  46. Gebicka, L. & Krych-Madej, J. The role of catalases in the prevention/promotion of oxidative stress. J. Inorg. Biochem. 197, 110699 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Fujiki, Y. & Bassik, M. C. A new paradigm in catalase research. Trends Cell Biol. 31, 148–151 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Okumoto, K. et al. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. eLife 9, e55896 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Roscoe, J. M. & Sevier, C. S. Pathways for sensing and responding to hydrogen peroxide at the endoplasmic reticulum. Cells 9, 2314 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  50. Bestetti, S. et al. Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biol. 28, 101326 (2020).

    Article  PubMed  CAS  Google Scholar 

  51. Millare, B., O’Rourke, B. & Trayanova, N. Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release. Sci. Rep. https://doi.org/10.1038/s41598-020-71308-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alshaabi, H. et al. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 38, 101818 (2021).

    Article  PubMed  CAS  Google Scholar 

  53. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yoboue, E. D., Sitia, R. & Simmen, T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death. Dis. 9, 331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tanaka, L. Y., Oliveira, P. V. S. & Laurindo, F. R. M. Peri/epicellular thiol oxidoreductases as mediators of extracellular redox signaling. Antioxid. Redox Signal. 33, 280–307 (2020).

    Article  PubMed  CAS  Google Scholar 

  56. Caserta, S. & Ghezzi, P. Release of redox enzymes and micro-RNAs in extracellular vesicles, during infection and inflammation. Free Radic. Biol. Med. 169, 248–257 (2021).

    Article  PubMed  CAS  Google Scholar 

  57. Bauer, G. Inhibition of membrane-associated catalase, extracellular ROS/RNS signaling and aquaporin/H2O2-mediated intracellular glutathione depletion cooperate during apoptosis induction in the human gastric carcinoma cell line MKN-45. Antioxid. (Basel) https://doi.org/10.3390/antiox10101585 (2021).

    Article  Google Scholar 

  58. Glorieux, C. & Calderon, P. B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 398, 1095–1108 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020). This paper describes Oximouse, a quantitative mapping data set of the mouse cysteine redox proteome in vivo.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Keßler, M., Wittig, I., Ackermann, J. & Koch, I. Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods. Biol. Chem. 402, 925–935 (2021).

    Article  PubMed  Google Scholar 

  61. Pei, J. F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008). This work is a comprehensive overview of the chemical principles that underly the biology of ROS.

    Article  PubMed  CAS  Google Scholar 

  63. Travasso, R. D. M., Sampaio Dos Aidos, F., Bayani, A., Abranches, P. & Salvador, A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol. 12, 233–245 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J. & Toledano, M. B. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. Woo, H. A. et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140, 517–528 (2010).

    Article  PubMed  CAS  Google Scholar 

  66. Marinho, H. S., Real, C., Cyrne, L., Soares, H. & Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535–562 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Held, J. M. Redox systems biology: harnessing the sentinels of the cysteine redoxome. Antioxid. Redox Signal. 32, 659–676 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1–NRF2 system: a thiol-based sensor–effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018). This work is a comprehensive review of the mechanism, biology and medical aspects of the KEAP1-NRF2 system that regulates oxidative and electrophilic responses.

    Article  PubMed  CAS  Google Scholar 

  69. Mitchell, S., Vargas, J. & Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 227–241 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Scholtes, C. & Giguère, V. Transcriptional regulation of ROS homeostasis by the ERR subfamily of nuclear receptors. Antioxid. (Basel) https://doi.org/10.3390/antiox10030437 (2021).

    Article  Google Scholar 

  72. Klotz, L. O. et al. Redox regulation of FoxO transcription factors. Redox Biol. 6, 51–72 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Soh, R., Hardy, A. & Zur Nieden, N. I. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radic. Biol. Med. 169, 224–237 (2021).

    Article  PubMed  CAS  Google Scholar 

  74. Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á. L. & Pérez, S. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell Longev. 2020, 1452696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shi, T. & Dansen, T. B. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid. Redox Signal. 33, 839–859 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  PubMed  CAS  Google Scholar 

  77. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014). This work is a comprehensive review of the central role of selenoproteins in redox biology.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Duarte, T. L., Talbot, N. P. & Drakesmith, H. NRF2 and hypoxia-inducible factors: key players in the redox control of systemic iron homeostasis. Antioxid. Redox Signal. 35, 433–452 (2021).

    Article  PubMed  CAS  Google Scholar 

  80. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017). This work is a comprehensive review of oxidative stress, eustress and distress.

    Article  PubMed  CAS  Google Scholar 

  81. Selye, H. Stress and distress. Compr. Ther. 1, 9–13 (1975).

    PubMed  CAS  Google Scholar 

  82. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox. Biol. 11, 613–619 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the golden mean of healthy living. Redox. Biol. 8, 205–215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 224C, 164–175 (2014).

    Article  Google Scholar 

  85. Handy, D. E. & Loscalzo, J. Responses to reductive stress in the cardiovascular system. Free Radic. Biol. Med. 109, 114–124 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61 (2020).

    Article  PubMed  CAS  Google Scholar 

  87. Zhang, L. et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 26, 101284 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Calabrese, E. J. & Kozumbo, W. J. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol. Res. 167, 105526 (2021).

    Article  PubMed  CAS  Google Scholar 

  89. Schirrmacher, V. Less can be more: the hormesis theory of stress adaptation in the global biosphere and its implications. Biomedicines https://doi.org/10.3390/biomedicines9030293 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ristow, M. & Schmeisser, K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose. Response 12, 288–341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003).

    Article  PubMed  Google Scholar 

  92. Davies, K. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).

    Article  Google Scholar 

  93. Sies, H. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol. 41, 101867 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sies, H. & Ursini, F. Homeostatic control of redox status and health. IUBMB Life https://doi.org/10.1002/iub.2519 (2021).

    Article  PubMed  Google Scholar 

  95. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Muri, J. & Kopf, M. Redox regulation of immunometabolism. Nat. Rev. Immunol. 21, 363–381 (2020).

    Article  PubMed  Google Scholar 

  97. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Anathy, V. et al. Reducing protein oxidation reverses lung fibrosis. Nat. Med. 24, 1128–1135 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kim, S. J. et al. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic. Biol. Med. 101, 482–490 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 1, 201–211 (2019).

    Article  PubMed  CAS  Google Scholar 

  101. Margaritelis, N. V., Paschalis, V., Theodorou, A. A., Kyparos, A. & Nikolaidis, M. G. Redox basis of exercise physiology. Redox Biol. 35, 101499 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yin, Z. et al. Structural basis for a complex I mutation that blocks pathological ROS production. Nat. Commun. 12, 707 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hebbar, S. & Knust, E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 43, e2100096 (2021).

    Article  PubMed  Google Scholar 

  105. Rampon, C., Volovitch, M., Joliot, A. & Vriz, S. Hydrogen peroxide and redox regulation of developments. Antioxidants 7, antiox7110159 (2018).

    Article  Google Scholar 

  106. Kil, I. S. et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584–594 (2012).

    Article  PubMed  CAS  Google Scholar 

  107. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. D’Souza, A. D., Parish, I. A., Krause, D. S., Kaech, S. M. & Shadel, G. S. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol. Ther. 21, 42–48 (2013).

    Article  PubMed  Google Scholar 

  109. Dai, D. F. et al. Mitochondrial-targeted catalase: extended longevity and the roles in various disease models. Prog. Mol. Biol. Transl. Sci. 146, 203–241 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005). This paper uses mitochondria-targeted catalase to modulate mitochondrial H2O2 levels and, thereby, impact the lifespan in mice.

    Article  PubMed  CAS  Google Scholar 

  111. Ngoi, N. Y. L. et al. The redox–senescence axis and its therapeutic targeting. Redox Biol. https://doi.org/10.1016/j.redox.2021.102032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sommer, N. et al. Bypassing mitochondrial complex III using alternative oxidase inhibits acute pulmonary oxygen sensing. Sci. Adv. 6, eaba0694 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Behring, J. B. et al. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci. Signal https://doi.org/10.1126/scisignal.aay7315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wild, C. P. The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32 (2012).

    Article  PubMed  Google Scholar 

  115. Vermeulen, R., Schymanski, E. L., Barabasi, A. L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020). This work is a comprehensive review of the exposome and health.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sakaguchi, R. & Mori, Y. Transient receptor potential (TRP) channels: biosensors for redox environmental stimuli and cellular status. Free Radic. Biol. Med. 146, 36–44 (2020).

    Article  PubMed  CAS  Google Scholar 

  118. Daiber, A. et al. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress — implications for cardiovascular and neurodegenerative diseases. Arch. Biochem. Biophys. 696, 108662 (2020).

    Article  PubMed  CAS  Google Scholar 

  119. Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ansari, M. O. et al. Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci. Rep. 9, 6912 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Münzel, T., Sørensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 18, 619–636 (2021).

    Article  PubMed  Google Scholar 

  122. Schuermann, D. & Mevissen, M. Manmade electromagnetic fields and oxidative stress — biological effects and consequences for health. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22073772 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Krutmann, J., Schikowski, T., Morita, A. & Berneburg, M. Environmentally-induced (extrinsic) skin aging: exposomal factors and underlying mechanisms. J. Invest. Dermatol. 141, 1096–1103 (2021).

    Article  PubMed  CAS  Google Scholar 

  124. Vogel, C. F. A., Van Winkle, L. S., Esser, C. & Haarmann-Stemmann, T. The aryl hydrocarbon receptor as a target of environmental stressors — implications for pollution mediated stress and inflammatory responses. Redox Biol. 34, 101530 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Rothhammer, V. et al. Aryl hydrocarbon receptor activation in astrocytes by laquinimod ameliorates autoimmune inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/nxi.0000000000000946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bock, K. W. Aryl hydrocarbon receptor (AHR) functions: balancing opposing processes including inflammatory reactions. Biochem. Pharmacol. 178, 114093 (2020).

    Article  PubMed  CAS  Google Scholar 

  127. Kubli, S. P. et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc. Natl Acad. Sci. USA 116, 3604–3613 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ren, F. et al. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci. Total. Env. 719, 135097 (2020).

    Article  CAS  Google Scholar 

  129. Dumas, A. & Knaus, U. G. Raising the ‘good’ oxidants for immune protection. Front. Immunol. 12, 698042 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Yardeni, T. et al. Host mitochondria influence gut microbiome diversity: a role for ROS. Sci. Signal. https://doi.org/10.1126/scisignal.aaw3159 (2019).

    Article  PubMed  Google Scholar 

  131. Saeedi, B. J. et al. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 31, 956–968 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Kanner, J. Polyphenols by generating H2O2, affect cell eedox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: in vitro, in vivo and human health. Antioxid. (Basel) https://doi.org/10.3390/antiox9090797 (2020).

    Article  Google Scholar 

  133. Del Rio, D. et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818–1892 (2013). This work is a comprehensive review of the role of polyphenolic phytochemicals in human health.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Oteiza, P. I., Fraga, C. G. & Galleano, M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: from experimental models to humans. Redox Biol. 42, 101914 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Woodby, B., Penta, K., Pecorelli, A., Lila, M. A. & Valacchi, G. Skin health from the inside out. Annu. Rev. Food Sci. Technol. 11, 235–254 (2020).

    Article  PubMed  CAS  Google Scholar 

  136. Sies, H. & Stahl, W. Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 24, 173–200 (2004).

    Article  PubMed  CAS  Google Scholar 

  137. Jackson, M. J., Stretton, C. & McArdle, A. Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: what do concentrations tell us about potential mechanisms? Redox Biol. 35, 101484 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Dimauro, I., Paronetto, M. P. & Caporossi, D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol. 35, 101477 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gomez-Cabrera, M. C. et al. Redox modulation of muscle mass and function. Redox Biol. 35, 101531 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dennis, K. K., Go, Y. M. & Jones, D. P. Redox systems biology of nutrition and oxidative stress. J. Nutr. 149, 553–565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang, R. S., Oldham, W. M., Maron, B. A. & Loscalzo, J. Systems biology approaches to redox metabolism in stress and disease states. Antioxid. Redox Signal. 29, 953–972 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kim, E. et al. Redox probing for chemical information of oxidative stress. Anal. Chem. 89, 1583–1592 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Peake, J. M., Kerr, G. & Sullivan, J. P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 9, 743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Meng, J. et al. Precision redox: the key for antioxidant pharmacology. Antioxid. Redox Signal. 34, 1069–1082 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    Article  PubMed  CAS  Google Scholar 

  147. Elbatreek, M. H., Mucke, H. & Schmidt, H. H. H. W. NOX inhibitors: from bench to naxibs to bedside. Handb. Exp. Pharmacol. 264, 145–168 (2021).

    Article  PubMed  CAS  Google Scholar 

  148. Davies, M. J. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol. Ther. 218, 107685 (2021).

    Article  PubMed  CAS  Google Scholar 

  149. Casas, A. I. et al. On the clinical pharmacology of reactive oxygen species. Pharmacol. Rev. 72, 801–828 (2020). This work is a comprehensive overview of applied network pharmacology leading to improved design of redox therapeutics for precision medicine.

    Article  PubMed  CAS  Google Scholar 

  150. Taguchi, K. & Yamamoto, M. The KEAP1–NRF2 system as a molecular target of cancer treatment. Cancers (Basel) https://doi.org/10.3390/cancers13010046 (2020).

    Article  Google Scholar 

  151. Panieri, E. & Saso, L. Inhibition of the NRF2/KEAP1 axis: a promising therapeutic strategy to alter redox balance of cancer cells. Antioxid. Redox Signal. 34, 1428–1483 (2021).

    Article  PubMed  CAS  Google Scholar 

  152. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article  PubMed  CAS  Google Scholar 

  153. Hitchler, M. J. & Domann, F. E. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic. Biol. Med. 170, 70–84 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. García-Giménez, J. L., Garcés, C., Romá-Mateo, C. & Pallardó, F. V. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic. Biol. Med. 170, 6–18 (2021).

    Article  PubMed  Google Scholar 

  155. Szypowska, A. A. & Burgering, B. M. The peroxide dilemma: opposing and mediating insulin action. Antioxid. Redox Signal. 15, 219–232 (2011).

    Article  PubMed  CAS  Google Scholar 

  156. Keeley, T. P. & Mann, G. E. Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol. Rev. 99, 161–234 (2019). This work is a comprehensive review of physiological normoxia and the importance of recapitulating it in cell culture experiments.

    Article  PubMed  CAS  Google Scholar 

  157. Augusto, O. & Truzzi, D. R. Carbon dioxide redox metabolites in oxidative eustress and oxidative distress. Biophys. Rev. https://doi.org/10.1007/s12551-021-00860-3 (2021).

    Article  PubMed  Google Scholar 

  158. Klein, S. G. et al. A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nat. Biomed. Eng. 5, 787–792 (2021).

    Article  PubMed  Google Scholar 

  159. Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995–1022 (2007).

    Article  PubMed  CAS  Google Scholar 

  160. Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840, 730–738 (2014). This paper shows the many artefacts that can arise when using fluorescent probes to assess reactive species.

    Article  PubMed  CAS  Google Scholar 

  161. Rezende, F., Brandes, R. P. & Schröder, K. Detection of hydrogen peroxide with fluorescent dyes. Antioxid. Redox Signal. 29, 585–602 (2018).

    Article  PubMed  CAS  Google Scholar 

  162. Fuloria, S. et al. Comprehensive review of methodology to detect reactive oxygen species (ROS) in mammalian species and establish its relationship with antioxidants and cancer. Antioxid. (Basel) https://doi.org/10.3390/antiox10010128 (2021).

    Article  Google Scholar 

  163. Smolyarova, D. D., Podgorny, O. V., Bilan, D. S. & Belousov, V. V. A guide to genetically encoded tools for the study of H2O2. FEBS J. https://doi.org/10.1111/febs.16088 (2021).

    Article  PubMed  Google Scholar 

  164. Breus, O. & Dickmeis, T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol. Chem. 402, 363–378 (2021).

    Article  PubMed  CAS  Google Scholar 

  165. Bazopoulou, D. et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576, 301–305 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Barata, A. G. & Dick, T. P. In vivo imaging of H2O2 production in Drosophila. Methods Enzymol. 526, 61–82 (2013).

    Article  PubMed  CAS  Google Scholar 

  167. Sinenko, S. A., Starkova, T. Y., Kuzmin, A. A. & Tomilin, A. N. Physiological signaling functions of reactive oxygen species in stem cells: from flies to man. Front. Cell Dev. Biol. 9, 714370 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Love, N. R. et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 15, 222–228 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Fujikawa, Y. et al. Mouse redox histology using genetically encoded probes. Sci. Signal. 9, rs1 (2016).

    Article  PubMed  Google Scholar 

  170. Kostyuk, A. I. et al. Genetically encoded tools for research of cell signaling and metabolism under brain hypoxia. Antioxid. (Basel) https://doi.org/10.3390/antiox9060516 (2020).

    Article  Google Scholar 

  171. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006). This paper describes HyPer, the first genetically encoded H2O2 probe.

    Article  PubMed  CAS  Google Scholar 

  172. Gutscher, M. et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016). This paper describes the most recent versions of peroxiredoxin-based H2O2 probes.

    Article  PubMed  CAS  Google Scholar 

  174. Kritsiligkou, P., Shen, T. K. & Dick, T. P. A comparison of Prx- and OxyR-based H2O2 probes expressed in S. cerevisiae. J. Biol. Chem. 297, 100866 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Steinhorn, B., Eroglu, E. & Michel, T. Chemogenetic approaches to probe redox pathways: implications for cardiovascular pharmacology and toxicology. Annu. Rev. Pharmacol. Toxicol. 62, 551–571 (2021).

    Article  PubMed  Google Scholar 

  176. Steinhorn, B. et al. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Mishina, N. M. et al. Which antioxidant system shapes intracellular H2O2 gradients? Antioxid. Redox Signal. 31, 664–670 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Bogdanova, Y. A., Schultz, C. & Belousov, V. V. Local generation and imaging of hydrogen peroxide in living cells. Curr. Protoc. Chem. Biol. 9, 117–127 (2017).

    Article  PubMed  CAS  Google Scholar 

  179. Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Maeda, H. Which are you watching, an individual reactive oxygen species or total oxidative stress? Ann. N. Y. Acad. Sci. 1130, 149–156 (2008).

    Article  PubMed  CAS  Google Scholar 

  181. Wu, L. et al. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res. 52, 2582–2597 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Iwashita, H., Castillo, E., Messina, M. S., Swanson, R. A. & Chang, C. J. A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2018513118 (2021).

  183. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Zielonka, J. et al. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 25, 1793–1799 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Sies, H. Measurement of hydrogen peroxide formation in situ. Methods Enzymol. 77, 15–20 (1981).

    Article  PubMed  CAS  Google Scholar 

  186. Oshino, N., Chance, B., Sies, H. & Bücher, T. The role of H2O2 generation in perfused rat liver and the reaction of catalase Compound I and hydrogen donors. Arch. Biochem. Biophys. 154, 117–131 (1973).

    Article  PubMed  CAS  Google Scholar 

  187. Cox, A. G., Winterbourn, C. C. & Hampton, M. B. Measuring the redox state of cellular peroxiredoxins by immunoblotting. Methods Enzymol. 474, 51–66 (2010).

    Article  PubMed  CAS  Google Scholar 

  188. Pastor-Flores, D., Talwar, D., Pedre, B. & Dick, T. P. Real-time monitoring of peroxiredoxin oligomerization dynamics in living cells. Proc. Natl Acad. Sci. USA 117, 16313–16323 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zielonka, J. & Kalyanaraman, B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic. Biol. Med. 48, 983–1001 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Zielonka, J. et al. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J. Biol. Chem. 287, 2984–2995 (2012).

    Article  PubMed  CAS  Google Scholar 

  191. Shchepinova, M. M. et al. MitoNeoD: a mitochondria-targeted superoxide probe. Cell Chem. Biol. 24, 1285–1298 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Xiao, H. et al. Versatile fluorescent probes for imaging the superoxide anion in living cells and in vivo. Angew. Chem. Int. Ed. Engl. 59, 4216–4230 (2020).

    Article  PubMed  CAS  Google Scholar 

  193. Hu, J. J. et al. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J. Am. Chem. Soc. 137, 6837–6843 (2015).

    Article  PubMed  CAS  Google Scholar 

  194. Nauseef, W. M. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840, 757–767 (2014).

    Article  PubMed  CAS  Google Scholar 

  195. Abbas, K., Babic, N. & Peyrot, F. Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy. Methods 109, 31–43 (2016).

    Article  PubMed  CAS  Google Scholar 

  196. Mason, R. P. & Ganini, D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo — one stop shopping for free radical detection. Free Radic. Biol. Med. 131, 318–331 (2019).

    Article  PubMed  CAS  Google Scholar 

  197. Dikalov, S. I. & Harrison, D. G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20, 372–382 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Prolo, C., Rios, N., Piacenza, L., Alvarez, M. N. & Radi, R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic. Biol. Med. 128, 59–68 (2018).

    Article  PubMed  CAS  Google Scholar 

  199. Ma, C. et al. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 240, 118545 (2020).

    Article  PubMed  CAS  Google Scholar 

  200. Kostyuk, A. I. et al. Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nat. Commun. 13, 171 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Li, P. et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J. Am. Chem. Soc. 138, 2893–2896 (2016).

    Article  PubMed  CAS  Google Scholar 

  202. Hou, C. et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem. Neurosci. 9, 578–586 (2018).

    Article  PubMed  CAS  Google Scholar 

  203. Onukwufor, J. O. et al. Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic. Biol. Med. 147, 1–7 (2020).

    Article  PubMed  CAS  Google Scholar 

  204. Trewin, A. J. et al. Light-induced oxidant production by fluorescent proteins. Free Radic. Biol. Med. 128, 157–164 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Wojtovich, A. P. & Foster, T. H. Optogenetic control of ROS production. Redox Biol. 2, 368–376 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Zong, C. et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018).

    Article  PubMed  CAS  Google Scholar 

  207. Li, X., Duan, X., Yang, P., Li, L. & Tang, B. Accurate in situ monitoring of mitochondrial H2O2 by robust SERS nanoprobes with a Au–Se interface. Anal. Chem. 93, 4059–4065 (2021).

    Article  PubMed  CAS  Google Scholar 

  208. Kishimoto, S., Krishna, M. C., Khramtsov, V. V., Utsumi, H. & Lurie, D. J. In vivo application of proton–electron double-resonance imaging. Antioxid. Redox Signal. 28, 1345–1364 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Murphy, M. E. & Sies, H. Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186, 595–610 (1990).

    Article  PubMed  CAS  Google Scholar 

  210. Burgos, R. C. R. et al. Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Sci. Rep. 7, 1229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683–19708 (2019). This work is a comprehensive review of methods of analysis of oxidative protein modifications.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Sampadi, B. et al. Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action. Arch. Toxicol. 94, 1655–1671 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell Proteom. 18, 1027–1035 (2019).

    Article  CAS  Google Scholar 

  214. Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Preprint at bioRxiv https://doi.org/10.1101/2020.12.22.423933 (2021).

    Article  Google Scholar 

  215. Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    Article  PubMed  CAS  Google Scholar 

  216. Khoder-Agha, F. & Kietzmann, T. The glyco-redox interplay: principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol. 42, 101888 (2021). This work is a comprehensive review of the role of the redox glycome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Taniguchi, N. et al. Glyco-redox, a link between oxidative stress and changes of glycans: lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Arch. Biochem. Biophys. 595, 72–80 (2016).

    Article  PubMed  CAS  Google Scholar 

  218. Rusz, M. et al. Morpho-metabotyping the oxidative stress response. Sci. Rep. 11, 15471 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Hu, X., Go, Y. M. & Jones, D. P. Omics integration for mitochondria systems biology. Antioxid. Redox Signal. 32, 853–872 (2020). This paper describes multi-omics integration for biologically relevant redox networks.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Griffiths, H. R. et al. Biomarkers. Mol. Asp. Med. 23, 101–208 (2002).

    Article  CAS  Google Scholar 

  221. Pinchuk, I. et al. Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biol. 24, 101204 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Henning, T. & Weber, D. Redox biomarkers in dietary interventions and nutritional observation studies — from new insights to old problems. Redox Biol. 41, 101922 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Daiber, A. et al. Redox-related biomarkers in human cardiovascular disease — classical footprints and beyond. Redox Biol. 42, 101875 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Frijhoff, J. et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox. Signal. 23, 1144–1170 (2015). This work is a comprehensive analysis of clinical biomarkers of oxidative stress.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Szibor, M. et al. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology. Dis. Model. Mech. 10, 163–171 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  226. Scialo, F. & Sanz, A. Coenzyme Q redox signalling and longevity. Free Radic. Biol. Med. 164, 187–205 (2021).

    Article  PubMed  CAS  Google Scholar 

  227. Fang, J., Sheng, R. & Qin, Z. H. NADPH oxidases in the central nervous system: regional and cellular localization and the possible link to brain diseases. Antioxid. Redox Signal. 35, 951–973 (2021).

    Article  PubMed  CAS  Google Scholar 

  228. Helfinger, V. et al. Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2020152118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Wörsdörfer, P. & Ergün, S. The impact of oxygen availability and multilineage communication on organoid maturation. Antioxid. Redox Signal. 35, 217–233 (2021).

    Article  PubMed  Google Scholar 

  230. Görlach, A. et al. Reactive oxygen species, nutrition, hypoxia and diseases: problems solved? Redox Biol. 6, 372–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Ward, J. P. Oxygen sensors in context. Biochim. Biophys. Acta 1777, 1–14 (2008).

    Article  PubMed  CAS  Google Scholar 

  232. Warpsinski, G. et al. Nrf2-regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: consequences for sulforaphane mediated protection against hypoxia–reoxygenation. Redox Biol. 37, 101708 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Ferguson, D. C. J. et al. Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radic. Biol. Med. 126, 322–333 (2018).

    Article  PubMed  CAS  Google Scholar 

  234. Chapple, S. J. et al. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels. Free Radic. Biol. Med. 92, 152–162 (2016).

    Article  PubMed  CAS  Google Scholar 

  235. Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. 595, 7275–7309 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Place, T. L., Domann, F. E. & Case, A. J. Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radic. Biol. Med. 113, 311–322 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Noll, T., de Groot, H. & Wissemann, P. A computer-supported oxystat system maintaining steady-state O2 partial pressures and simultaneously monitoring O2 uptake in biological systems. Biochem. J. 236, 765–769 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Ermakova, Y. G. et al. SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem. Commun. 54, 2898–2901 (2018).

    Article  CAS  Google Scholar 

  239. Mueller, S., Millonig, G. & Waite, G. N. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Adv. Med. Sci. 54, 121–135 (2009).

    Article  PubMed  CAS  Google Scholar 

  240. Waldeck-Weiermair, M. et al. Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radic. Biol. Med. 177, 360–369 (2021).

    Article  PubMed  CAS  Google Scholar 

  241. Bulina, M. E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

    Article  PubMed  CAS  Google Scholar 

  242. Sarkisyan, K. S. et al. KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS ONE 10, e0145287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Takemoto, K. et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci. Rep. 3, 2629 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Rabbani, N. & Thornalley, P. J. Protein glycation — biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol. 42, 101920 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Freeman, B. A., O’Donnell, V. B. & Schopfer, F. J. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide 77, 106–111 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Kagan, V. E. et al. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radic. Biol. Med. 147, 231–241 (2020). This paper describes phospholipids in the context of the redox lipidome.

    Article  PubMed  CAS  Google Scholar 

  248. Preil, S. A. et al. Quantitative proteome analysis reveals increased content of basement membrane proteins in arteries from patients with type 2 diabetes mellitus and lower levels among metformin users. Circ. Cardiovasc. Genet. 8, 727–735 (2015).

    Article  PubMed  CAS  Google Scholar 

  249. Slavov, N. Unpicking the proteome in single cells. Science 367, 512–513 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Shi, Y. & Carroll, K. S. Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. Acc. Chem. Res. 53, 20–31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Havelund, J. F. et al. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J. Proteom. 156, 40–51 (2017).

    Article  CAS  Google Scholar 

  252. van ‘t Erve, T. J., Kadiiska, M. B., London, S. J. & Mason, R. P. Classifying oxidative stress by F2-isoprostane levels across human diseases: a meta-analysis. Redox Biol. 12, 582–599 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Cruciani, G., Domingues, P., Fedorova, M., Galli, F. & Spickett, C. M. Redox lipidomics and adductomics — advanced analytical strategies to study oxidized lipids and lipid–protein adducts. Free Radic. Biol. Med. 144, 1–5 (2019).

    Article  PubMed  CAS  Google Scholar 

  254. Ravanat, J. L., Cadet, J. & Douki, T. Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr. Mol. Med. 12, 655–671 (2012).

    Article  PubMed  CAS  Google Scholar 

  255. Jørs, A. et al. Urinary markers of nucleic acid oxidation increase with age, obesity and insulin resistance in Danish children and adolescents. Free Radic. Biol. Med. 155, 81–86 (2020).

    Article  PubMed  Google Scholar 

  256. Seifermann, M. & Epe, B. Oxidatively generated base modifications in DNA: not only carcinogenic risk factor but also regulatory mark? Free Radic. Biol. Med. 107, 258–265 (2017).

    Article  PubMed  CAS  Google Scholar 

  257. Muruzabal, D., Collins, A. & Azqueta, A. The enzyme-modified comet assay: past, present and future. Food Chem. Toxicol. 147, 111865 (2021).

    Article  PubMed  CAS  Google Scholar 

  258. Patel, R. S. et al. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133, 361–369 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Abdulle, A. E. et al. Serum free thiols predict cardiovascular events and all-cause mortality in the general population: a prospective cohort study. BMC Med. https://doi.org/10.1186/s12916-020-01587-w (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Generous support is acknowledged: G.E.M., British Heart Foundation (FS19/25/34277, FS16/67/32548), Heart Research UK (RG2672) and King’s Together Strategic Award; M.J.D., Novo Nordisk Foundation (Laureate grants NNF13OC0004294 and NNF20SA0064214); D.P.J., P30-ES019776, R21-ES031824, R01-ES023485, U2C-ES030163 and RC2-DK118619; M.P.M., Medical Research Council UK (MC_U105663142) and a Wellcome Trust Investigator Award (110159/A/15Z); V.V.B., Ministry of Science and Higher Education, Russian Federation (grant 075-15-2019-1789); and H.S., Deutsche Forschungsgemeinschaft, National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Helmut Sies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Yimon Aye, Sergey Dikalov, Henry Forman and Ursula Jakob for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gene Expression Omnibus: https://www.ncbi.nlm.nih.gov/geo/

Metabolomics Workbench: https://www.metabolomicsworkbench.org

Oximouse: https://oximouse.hms.harvard.edu/

Glossary

Electrophile

A molecule with an electron-deficient centre that reacts with electron-rich (nucleophile) species.

Redox tone

The oxidation–reduction steady states of redox-active elements in cells and tissues.

Radical

An atom or molecule with one or more unpaired electrons.

Redox medicine

The use of concepts and strategies of redox biology for applications in diagnosis and therapy.

Redox relay mechanisms

Mechanisms by which interacting molecules (often proteins) undergo reversible and consecutive redox reactions, transferring a redox signal from one site to another.

Peroxiredoxins

A family of six ubiquitous, highly reactive, thiol-containing enzymes that control hydrogen peroxide (H2O2) levels and mediate signal transduction.

Transition metal ion

A metal ion from the central block of the periodic table.

Fe–S cluster

Geometrical clusters of iron and sulfur. These occur in multiple forms including [2Fe–2S], [4Fe–3S], [3Fe–4S] and [4Fe–4S] and are often involved in electron transfer chains.

Uncoupling protein 1

(UCP1). A protein of the inner mitochondrial membrane that dissipates the proton electrochemical potential gradient across the membrane, thereby uncoupling oxidation from ATP production, leading to thermogenesis.

Superoxide dismutases

Enzymes which convert two molecules of superoxide (O2.–) to one molecule of oxygen and one molecule of hydrogen peroxide (H2O2), a process called dismutation.

Redox networks

Networks of interacting molecules that undergo redox reactions.

NADPH oxidases

(NOXs). Membrane-bound enzyme complexes, assembled from multiple protein components, that use NADPH to reduce O2 to the superoxide anion radical (O2.–) and/or hydrogen peroxide (H2O2).

Caveolae

Invaginations of the plasma membrane that bud off internally, which are thought to form from lipid rafts.

Ischaemia

A condition in which blood flow (and hence the supply of O2 and other materials) to a tissue is impaired.

Reverse electron transfer

Flow of electrons through an electron transport chain (ETC) in the reverse direction to that which normally occurs, for example in ischaemia.

Glutathione

(GSH). A key cysteine-containing tripeptide (γ-glutamyl-cysteine-glycine) that acts as a reducing cofactor and direct antioxidant.

Catalase

A haeme-containing protein that enzymatically dismutates hydrogen peroxide (H2O2) to O2 and H2O (catalatic reaction) or reduces H2O2 to H2O by oxidizing a hydrogen donor AH2 to A (peroxidatic reaction).

Xenobiotics

Chemical substances not naturally present in an organism.

Peroxiporin

An aquaporin that transports hydrogen peroxide (H2O2) across membranes.

Membrane contact sites

A location where membranes come into close proximity, facilitating transfer of molecules and signals.

Protein disulfide isomerase

(PDI). An enzyme typically, but not exclusively, found in the endoplasmic reticulum of eukaryotes that catalyses the formation and breakage of disulfide bonds between cysteine residues.

Thioredoxin

(TRX). A small ubiquitous redox-active protein that plays a role in redox signalling via the maintenance of cysteine residues in their thiol form.

Redox interactome

A collective term for all of the layers of omics space with redox interactions. This includes both reversible and irreversible redox reactions. The proteome has the largest number of reversible oxidizable elements.

Redox hubs

Central nodes in a redox network through which redox changes can impact multiple downstream components.

Selenocysteine

A selenium analogue of cysteine, where selenium replaces sulfur.

Fenton reaction

The reaction of Fe2+ with H2O2 that generates the hydroxyl radical (HO.).

Hormesis

A biologic process in which low-dose exposure to a stressor activates mechanisms that protect against future toxic exposures.

Transient receptor potential channels

A group of ion channels mostly localized on the plasma membrane of animal cells, mediating various sensations such as pain or temperature.

Myeloperoxidase

A leukocyte (mainly neutrophil and monocyte)-derived haeme enzyme that catalyses the conversion of hydrogen peroxide (H2O2) to multiple reactive oxidant species including hypochlorous acid (HOCl). A major component of the innate immune response against invading pathogens, but also strongly implicated in tissue damage at sites of inflammation.

Epiproteome

The set of post-translational modifications of the proteome supported by evolved mechanisms for control of protein activities. These are distinct from post-translational modification by reactive environmental chemicals. Many of these modifications, such as phosphorylation, are reversible and are integrated with redox systems in the redox interactome.

Oxystat

A device to maintain a constant O2 concentration despite fluctuations in the O2 consumption rate. These generally operate by having an O2 sensor and feedback system to regulate the rate of introduction of O2.

Boronates

A family of compounds derived from boric acid of general structure [R–B(OH)2], where R is an alkyl or aryl group. The hydroxyl groups can be derivatized to esters [R–B(OR′)2] to form redox-active probes.

Cytochrome c

A small (~12 kDa) haeme protein usually found loosely associated with the outer face of the inner mitochondrial membrane where it functions to transfer electrons between complex III and complex IV of the electron transport chain (ETC) via cycling between the Fe3+ and Fe2+ states. Its release into the cytosol is commonly used as a marker of mitochondrial damage and apoptosis.

Tetrazolium salts

Salts (including MTT, XTT, MTS and WSTs) with a tetra-nitrogen heterocycle that are reduced by the superoxide anion radical (O2.–) and also act as substrates for active cellular dehydrogenases and reductases. In the presence of NADH/NADPH, they are reduced to formazans which have strong, distinct optical absorption spectra. Widely used as a means of distinguishing metabolically active from inactive (dead) cells.

Lucigenin

An organic compound (10,10′-dimethyl-9,9′-bisacridinium nitrate) used, often inappropriately, as a chemiluminescent probe for the detection of superoxide anion radical (O2.–) in cells and tissue.

Luciferin

A small-molecule substrate for the enzyme luciferase that reacts with oxygen to release energy as light.

l-NAME

The l isomer of NG-nitro-arginine methyl ester, which is used as an inhibitor of nitric oxide synthase enzymes.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sies, H., Belousov, V.V., Chandel, N.S. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23, 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00456-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing