Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of phosphate transport

Abstract

Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a–2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease — a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.

Key points

  • In the past 25 years, the cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the Na+-dependent inorganic phosphate (Pi) cotransporters NaPi-IIa, NaPi-IIb and NaPi-IIc, respectively, has enabled study of the molecular mechanisms that underlie the regulation of renal and intestinal Pi transport.

  • Dietary factors, particularly dietary Pi, as well as hormones and phosphatonins, including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), regulate the expression and activity of the Pi transporters through transcriptional, translational and post-translational mechanisms that involve interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking via endocytosis or exocytosis.

  • Mutations in any of the three transporters can cause dysregulation of epithelial Pi transport, can affect serum Pi levels and can cause damage of various target organs in both humans and rodents, highlighting the importance of these transporters in the maintenance of local and systemic Pi homeostasis.

  • Functional studies together with structure–function studies have provided insights into the transport mechanisms of the NaPi-II cotransporter.

  • The development of small molecules that modify the activity of Pi transporters holds promise for the maintenance of Pi homeostasis in patients with chronic kidney disease and other disorders associated with hyperphosphataemia and its severe cardiovascular and skeletal consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PTH-induced internalization of NaPi-IIa and NaPi-IIc.
Fig. 2: Interaction of PDZ proteins with NaPi-IIa and NaPi-IIc in renal proximal tubule cells.
Fig. 3: The effect of membrane lipid composition on the regulation of NaPi-IIa dynamics.
Fig. 4: A kinetic scheme for Na+-coupled Pi transport mediated by NaPi-II cotransporters.
Fig. 5: The molecular structure of NaPi proteins.
Fig. 6: Inhibitors of NaPi-II transporters.

Similar content being viewed by others

References

  1. Baumann, K., de Rouffignac, C., Roinel, N., Rumrich, G. & Ullrich, K. J. Renal phosphate transport: inhomogeneity of local proximal transport rates and sodium dependence. Pflugers Arch. 356, 287–298 (1975).

    CAS  PubMed  Google Scholar 

  2. Berner, W., Kinne, R. & Murer, H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem. J. 160, 467–474 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoffmann, N., Thees, M. & Kinne, R. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 362, 147–156 (1976).

    CAS  PubMed  Google Scholar 

  4. Ullrich, K. J., Rumrich, G. & Kloss, S. Phosphate transport in the proximal convolution of the rat kidney. I. Tubular heterogeneity, effect of parathyroid hormone in acute and chronic parathyroidectomized animals and effect of phosphate diet. Pflugers Arch. 372, 269–274 (1977).

    CAS  PubMed  Google Scholar 

  5. Ullrich, K. J., Rumrich, G. & Kloss, S. Phosphate transport in the proximal convolution of the rat kidney II. Effect of extracellular Ca2+ and application of the Ca2+ ionophore A 23187 in chronic PTX animals. Pflugers Arch. 375, 97–103 (1978).

    CAS  PubMed  Google Scholar 

  6. Magagnin, S. et al. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc. Natl Acad. Sci. USA 90, 5979–5983 (1993).

    CAS  PubMed  Google Scholar 

  7. Hilfiker, H. et al. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl Acad. Sci. USA 95, 14564–14569 (1998).

    CAS  PubMed  Google Scholar 

  8. Segawa, H. et al. Growth-related renal type II Na/Pi cotransporter. J. Biol. Chem. 277, 19665–19672 (2002).

    CAS  PubMed  Google Scholar 

  9. Segawa, H. et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am. J. Physiol. Renal Physiol. 297, F671–F678 (2009).

    CAS  PubMed  Google Scholar 

  10. Tenenhouse, H. S. & Beck, L. Renal Na+-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 49, 1027–1032 (1996).

    CAS  PubMed  Google Scholar 

  11. Lederer, E. & Miyamoto, K. Clinical consequences of mutations in sodium phosphate cotransporters. Clin. J. Am. Soc. Nephrol. 7, 1179–1187 (2012).

    CAS  PubMed  Google Scholar 

  12. Forster, I. C., Hernando, N., Biber, J. & Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34, 386–395 (2013).

    CAS  PubMed  Google Scholar 

  13. Levi, M. et al. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am. J. Physiol. 267, F900–F908 (1994).

    CAS  PubMed  Google Scholar 

  14. Villa-Bellosta, R. et al. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Renal Physiol. 296, F691–F699 (2009).

    CAS  PubMed  Google Scholar 

  15. Pfister, M. F. et al. Cellular mechanisms involved in the acute adaptation of OK cell Na/Pi-cotransport to high- or low-Pi medium. Pflugers Arch. 435, 713–719 (1998).

    CAS  PubMed  Google Scholar 

  16. Segawa, H. et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am. J. Physiol. Renal Physiol. 288, F587–F596 (2005).

    CAS  PubMed  Google Scholar 

  17. Lotscher, M., Kaissling, B., Biber, J., Murer, H. & Levi, M. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. J. Clin. Invest. 99, 1302–1312 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Madjdpour, C., Bacic, D., Kaissling, B., Murer, H. & Biber, J. Segment-specific expression of sodium-phosphate cotransporters NaPi-IIa and -IIc and interacting proteins in mouse renal proximal tubules. Pflugers Arch. 448, 402–410 (2004).

    CAS  PubMed  Google Scholar 

  19. Weinman, E. J. et al. Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J. Clin. Invest. 117, 3412–3420 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shenolikar, S., Voltz, J. W., Minkoff, C. M., Wade, J. B. & Weinman, E. J. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc. Natl Acad. Sci. USA 99, 11470–11475 (2002).

    CAS  PubMed  Google Scholar 

  21. Capuano, P. et al. Expression and regulation of the renal Na/phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1. Pflugers Arch. 449, 392–402 (2005).

    CAS  PubMed  Google Scholar 

  22. Ritthaler, T. et al. Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. Kidney Int. 55, 976–983 (1999).

    CAS  PubMed  Google Scholar 

  23. Biber, J., Hernando, N. & Forster, I. Phosphate transporters and their function. Annu. Rev. Physiol. 75, 535–550 (2013).

    CAS  PubMed  Google Scholar 

  24. Bergwitz, C. & Juppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 61, 91–104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas, L. et al. Acute adaption to oral or intravenous phosphate requires parathyroid hormone. J. Am. Soc. Nephrol. 28, 903–914 (2017).

    CAS  PubMed  Google Scholar 

  26. Zajicek, H. K. et al. Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int. 60, 694–704 (2001).

    CAS  PubMed  Google Scholar 

  27. Inoue, M. et al. Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity. J. Biol. Chem. 279, 49160–49171 (2004).

    CAS  PubMed  Google Scholar 

  28. Breusegem, S. Y. et al. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am. J. Physiol. Renal Physiol. 297, F350–F361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ambuhl, P. M., Zajicek, H. K., Wang, H., Puttaparthi, K. & Levi, M. Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney Int. 53, 1288–1298 (1998).

    CAS  PubMed  Google Scholar 

  30. Nowik, M. et al. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch. 457, 539–549 (2008).

    CAS  PubMed  Google Scholar 

  31. Villa-Bellosta, R. & Sorribas, V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Arch. 459, 499–508 (2010).

    CAS  PubMed  Google Scholar 

  32. Kempson, S. A. et al. Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am. J. Physiol. 268, F784–F791 (1995).

    CAS  PubMed  Google Scholar 

  33. Deliot, N. et al. Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am. J. Physiol. Cell Physiol. 289, C159–C167 (2005).

    CAS  PubMed  Google Scholar 

  34. Picard, N. et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 460, 677–687 (2010).

    CAS  PubMed  Google Scholar 

  35. Segawa, H. et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am. J. Physiol. Renal Physiol. 292, F395–F403 (2007).

    CAS  PubMed  Google Scholar 

  36. Lederer, E. D., Khundmiri, S. J. & Weinman, E. J. Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transport in epithelial cells. J. Am. Soc. Nephrol. 14, 1711–1719 (2003).

    CAS  PubMed  Google Scholar 

  37. Karim, Z. et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N. Engl. J. Med. 359, 1128–1135 (2008).

    CAS  PubMed  Google Scholar 

  38. Capuano, P. et al. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am. J. Physiol. Cell Physiol. 292, C927–C934 (2007).

    CAS  PubMed  Google Scholar 

  39. Mahon, M. J., Donowitz, M., Yun, C. C. & Segre, G. V. Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  40. Mahon, M. J. & Segre, G. V. Stimulation by parathyroid hormone of a NHERF-1-assembled complex consisting of the parathyroid hormone I receptor, phospholipase Cbeta, and actin increases intracellular calcium in opossum kidney cells. J. Biol. Chem. 279, 23550–23558 (2004).

    CAS  PubMed  Google Scholar 

  41. Traebert, M., Volkl, H., Biber, J., Murer, H. & Kaissling, B. Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am. J. Physiol. Renal Physiol. 278, F792–F798 (2000).

    CAS  PubMed  Google Scholar 

  42. Lederer, E. D., Sohi, S. S. & McLeish, K. R. Parathyroid hormone stimulates extracellular signal-regulated kinase (ERK) activity through two independent signal transduction pathways: role of ERK in sodium-phosphate cotransport. J. Am. Soc. Nephrol. 11, 222–231 (2000).

    CAS  PubMed  Google Scholar 

  43. Bacic, D. et al. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney. Pflugers Arch. 446, 52–60 (2003).

    CAS  PubMed  Google Scholar 

  44. Keusch, I. et al. Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int. 54, 1224–1232 (1998).

    CAS  PubMed  Google Scholar 

  45. Pfister, M. F. et al. Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc. Natl Acad. Sci. USA 95, 1909–1914 (1998).

    CAS  PubMed  Google Scholar 

  46. Lotscher, M. et al. Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. J. Clin. Invest. 104, 483–494 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Blaine, J. et al. PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. Am. J. Physiol. Cell Physiol. 297, C1339–C1346 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lanzano, L. et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am. J. Physiol. Cell Physiol. 301, C850–C861 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurnik, B. R. & Hruska, K. A. Mechanism of stimulation of renal phosphate transport by 1,25-dihydroxycholecalciferol. Biochim. Biophys. Acta 817, 42–50 (1985).

    CAS  PubMed  Google Scholar 

  50. Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).

    CAS  PubMed  Google Scholar 

  51. Capuano, P. et al. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Am. J. Physiol. Cell Physiol. 288, C429–C434 (2005).

    CAS  PubMed  Google Scholar 

  52. Kaneko, I. et al. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Pflugers Arch. 461, 77–90 (2011).

    CAS  PubMed  Google Scholar 

  53. Loffing, J. et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J. Am. Soc. Nephrol. 9, 1560–1567 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Arar, M., Levi, M. & Baum, M. Maturational effects of glucocorticoids on neonatal brush-border membrane phosphate transport. Pediatr. Res. 35, 474–478 (1994).

    CAS  PubMed  Google Scholar 

  55. Frick, A. & Durasin, I. Proximal tubular reabsorption of inorganic phosphate in adrenalectomized rats. Pflugers Arch. 385, 189–192 (1980).

    CAS  PubMed  Google Scholar 

  56. Levi, M. et al. Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J. Clin. Invest. 96, 207–216 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arima, K. et al. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G426–G434 (2002).

    CAS  PubMed  Google Scholar 

  58. Stock, J. L., Coderre, J. A. & Mallette, L. E. Effects of a short course of estrogen on mineral metabolism in postmenopausal women. J. Clin. Endocrinol. Metab. 61, 595–600 (1985).

    CAS  PubMed  Google Scholar 

  59. Faroqui, S., Levi, M., Soleimani, M. & Amlal, H. Estrogen downregulates the proximal tubule type IIa sodium phosphate cotransporter causing phosphate wasting and hypophosphatemia. Kidney Int. 73, 1141–1150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, H. et al. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1317–G1324 (2003).

    CAS  PubMed  Google Scholar 

  61. Burris, D. et al. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforums (ERalpha and ERbeta) in rat kidney proximal tubule. Am. J. Physiol. Renal Physiol. 308, F522–F534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carrillo-Lopez, N. et al. Indirect regulation of PTH by estrogens may require FGF23. J. Am. Soc. Nephrol. 20, 2009–2017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alcalde, A. I. et al. Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140, 1544–1551 (1999).

    CAS  PubMed  Google Scholar 

  64. Sorribas, V., Markovich, D., Verri, T., Biber, J. & Murer, H. Thyroid hormone stimulation of Na/Pi-cotransport in opossum kidney cells. Pflugers Arch. 431, 266–271 (1995).

    CAS  PubMed  Google Scholar 

  65. Euzet, S., Lelievre-Pegorier, M. & Merlet-Benichou, C. Maturation of rat renal phosphate transport: effect of triiodothyronine. J. Physiol. 488, 449–457 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu, M. C., Shiizaki, K., Kuro-o, M. & Moe, O. W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 75, 503–533 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    CAS  PubMed  Google Scholar 

  68. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    CAS  PubMed  Google Scholar 

  69. Kolek, O. I. et al. 1alpha, 25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    CAS  PubMed  Google Scholar 

  70. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wolf, M. & White, K. E. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertension 23, 411–419 (2014).

    CAS  Google Scholar 

  72. Daryadel, A. et al. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470, 1569–1582 (2018).

    CAS  PubMed  Google Scholar 

  73. Bar, L. et al. Insulin suppresses the production of fibroblast growth factor 23 (FGF23). Proc. Natl Acad. Sci. USA 115, 5804–5809 (2018).

    PubMed  Google Scholar 

  74. Glosse, P. et al. AMP-activated kinase is a regulator of fibroblast growth factor 23 production. Kidney Int. 94, 491–501 (2018).

    CAS  PubMed  Google Scholar 

  75. Ito, N. et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol. Cell. Endocrinol. 399, 208–218 (2015).

    CAS  PubMed  Google Scholar 

  76. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    CAS  Google Scholar 

  77. Saito, H. et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J. Biol. Chem. 278, 2206–2211 (2003).

    CAS  PubMed  Google Scholar 

  78. Weinman, E. J., Steplock, D., Shenolikar, S. & Biswas, R. Fibroblast growth factor-23-mediated inhibition of renal phosphate transport in mice requires sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and synergizes with parathyroid hormone. J. Biol. Chem. 286, 37216–37221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Scanni, R., vonRotz, M., Jehle, S., Hulter, H. N. & Krapf, R. The human response to acute enteral and parenteral phosphate loads. J. Am. Soc. Nephrol. 25, 2730–2739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Christov, M. et al. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 84, 776–785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

    CAS  Google Scholar 

  83. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    CAS  PubMed  Google Scholar 

  84. Benet-Pages, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).

    CAS  PubMed  Google Scholar 

  85. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gattineni, J. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Renal Physiol. 297, F282–F291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gattineni, J. et al. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am. J. Physiol. Renal Physiol. 306, F351–F358 (2014).

    CAS  PubMed  Google Scholar 

  89. Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77, 232–238 (2010).

    CAS  PubMed  Google Scholar 

  90. White, K. E. et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 76, 361–367 (2005).

    CAS  PubMed  Google Scholar 

  91. Hu, M. C. et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438–3450 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, G. Z. et al. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553, 461–466 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brownstein, C. A. et al. A translocation causing increased alpha-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008).

    CAS  PubMed  Google Scholar 

  94. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    CAS  PubMed  Google Scholar 

  95. Topaz, O. et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 36, 579–581 (2004).

    CAS  PubMed  Google Scholar 

  96. Ichikawa, S. et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology 150, 2543–2550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ichikawa, S. et al. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse. Endocrinology 155, 3891–3898 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Ito, N., Findlay, D. M., Anderson, P. H., Bonewald, L. F. & Atkins, G. J. Extracellular phosphate modulates the effect of 1alpha, 25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J. Steroid Biochem. Mol. Biol. 136, 183–186 (2013).

    CAS  PubMed  Google Scholar 

  99. Fan, Y. et al. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J. 30, 428–440 (2016).

    CAS  PubMed  Google Scholar 

  100. Chefetz, I. et al. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity. Biochim. Biophys. Acta 1792, 61–67, (2009).

    Google Scholar 

  101. Francis, F. et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130–136 (1995).

    CAS  Google Scholar 

  102. Rowe, P. S. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit. Rev. Eukaryot. Gene Expr. 22, 61–86 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tenenhouse, H. S., Martel, J., Gauthier, C., Segawa, H. & Miyamoto, K. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am. J. Physiol. Renal Physiol. 285, F1271–F1278 (2003).

    CAS  PubMed  Google Scholar 

  104. Yuan, B. et al. Hexa-D-arginine treatment increases 7B2*PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J. Bone Miner. Res. 28, 56–72 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rowe, P. S. et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67, 54–68 (2000).

    CAS  PubMed  Google Scholar 

  106. Bresler, D., Bruder, J., Mohnike, K., Fraser, W. D. & Rowe, P. S. Serum MEPE-ASARM-peptides are elevated in X-linked rickets (HYP): implications for phosphaturia and rickets. J. Endocrinol. 183, R1–R9 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rowe, P. S. et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone 34, 303–319 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marks, J., Churchill, L. J., Debnam, E. S. & Unwin, R. J. Matrix extracellular phosphoglycoprotein inhibits phosphate transport. J. Am. Soc. Nephrol. 19, 2313–2320 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aniteli, T. M. et al. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE). Pflugers Arch. 470, 623–632 (2018).

    CAS  PubMed  Google Scholar 

  110. Argiro, L., Desbarats, M., Glorieux, F. H. & Ecarot, B. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74, 342–351 (2001).

    CAS  PubMed  Google Scholar 

  111. Toyosawa, S. et al. Expression of dentin matrix protein 1 in tumors causing oncogenic osteomalacia. Mod. Pathol. 17, 573–578 (2004).

    CAS  PubMed  Google Scholar 

  112. Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38, 1248–1250 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Martin, A. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25, 2551–2562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, L. et al. PTH and vitamin D repress DMP1 in cementoblasts. J. Dent. Res. 94, 1408–1416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Berndt, T. et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest. 112, 785–794 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hsieh, J. C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436 (1999).

    CAS  PubMed  Google Scholar 

  118. Cho, H. Y. et al. Transgenic mice overexpressing secreted frizzled-related proteins (sFRP)4 under the control of serum amyloid P promoter exhibit low bone mass but did not result in disturbed phosphate homeostasis. Bone 47, 263–271 (2010).

    CAS  PubMed  Google Scholar 

  119. Zinkle, A. & Mohammadi, M. Structural biology of the FGF7 subfamily. Front. Genet. 10, 102 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Carpenter, T. O. et al. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J. Clin. Endocrinol. Metab. 90, 1012–1020 (2005).

    CAS  PubMed  Google Scholar 

  121. Hernando, N. NaPi-IIa interacting partners and their (un)known functional roles. Pflugers Arch. 471, 67–82 (2018).

    PubMed  Google Scholar 

  122. Biber, J., Gisler, S. M., Hernando, N., Wagner, C. A. & Murer, H. PDZ interactions and proximal tubular phosphate reabsorption. Am. J. Physiol. Renal Physiol. 287, F871–F875 (2004).

    CAS  PubMed  Google Scholar 

  123. Weinman, E. J., Steplock, D., Wang, Y. & Shenolikar, S. Characterization of a protein cofactor that mediates protein kinase A regulation of the renal brush border membrane Na+-H+ exchanger. J. Clin. Invest. 95, 2143–2149 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Donowitz, M. et al. NHERF family and NHE3 regulation. J. Physiol. 567, 3–11 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hernando, N. et al. NaPi-IIa and interacting partners. J. Physiol. 567, 21–26 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Thelin, W. R., Hodson, C. A. & Milgram, S. L. Beyond the brush border: NHERF4 blazes new NHERF turf. J. Physiol. 567, 13–19 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Weinman, E. J., Cunningham, R., Wade, J. B. & Shenolikar, S. The role of NHERF-1 in the regulation of renal proximal tubule sodium-hydrogen exchanger 3 and sodium-dependent phosphate cotransporter 2a. J. Physiol. 567, 27–32 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yun, C. H. et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA 94, 3010–3015 (1997).

    CAS  PubMed  Google Scholar 

  129. Dobrinskikh, E., Giral, H., Caldas, Y. A., Levi, M. & Doctor, R. B. Shank2 redistributes with NaPilla during regulated endocytosis. Am. J. Physiol. Cell Physiol. 299, C1324–C1334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lanaspa, M. A. et al. Inorganic phosphate modulates the expression of the NaPi-2a transporter in the trans-Golgi network and the interaction with PIST in the proximal tubule. Biomed. Res. Int. 2013, 513932 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Villa-Bellosta, R. et al. Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int. 73, 456–464 (2008).

    CAS  PubMed  Google Scholar 

  132. Hernando, N. et al. PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc. Natl Acad. Sci. USA 99, 11957–11962 (2002).

    CAS  PubMed  Google Scholar 

  133. Weinman, E. J. et al. NHERF-1 is required for renal adaptation to a low-phosphate diet. Am. J. Physiol. Renal Physiol. 285, F1225–F1232 (2003).

    CAS  PubMed  Google Scholar 

  134. Wang, B. et al. Ezrin-anchored protein kinase A coordinates phosphorylation-dependent disassembly of a NHERF1 ternary complex to regulate hormone-sensitive phosphate transport. J. Biol. Chem. 287, 24148–24163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Giral, H. et al. NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J. Biol. Chem. 287, 35047–35056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gisler, S. M. et al. PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Kidney Int. 64, 1733–1745 (2003).

    CAS  PubMed  Google Scholar 

  137. Hernando, N. et al. NaPi-IIa interacting proteins and regulation of renal reabsorption of phosphate. Urol. Res. 38, 271–276 (2010).

    CAS  PubMed  Google Scholar 

  138. Giral, H. et al. Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J. Biol. Chem. 286, 15032–15042 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McWilliams, R. R. et al. Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells. Am. J. Physiol. Cell Physiol. 289, C1042–C1051 (2005).

    CAS  PubMed  Google Scholar 

  140. Dobrinskikh, E. et al. Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am. J. Physiol. Cell Physiol. 304, C561–C573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gisler, S. M. et al. Monitoring protein-protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Mol. Cell. Proteomics 7, 1362–1377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Levi, M., Jameson, D. M. & van der Meer, B. W. Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am. J. Physiol. 256, F85–F94 (1989).

    CAS  PubMed  Google Scholar 

  143. Sorribas, V. et al. Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney Int. 50, 855–863 (1996).

    CAS  PubMed  Google Scholar 

  144. Breusegem, S. Y. et al. Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Am. J. Physiol. Renal Physiol. 289, F154–F165 (2005).

    CAS  PubMed  Google Scholar 

  145. Levi, M., Baird, B. M. & Wilson, P. V. Cholesterol modulates rat renal brush border membrane phosphate transport. J. Clin. Invest. 85, 231–237 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Levi, M., Wilson, P. V., Cooper, O. J. & Gratton, E. Lipid phases in renal brush border membranes revealed by Laurdan fluorescence. Photochem. Photobiol. 57, 420–425 (1993).

    CAS  PubMed  Google Scholar 

  147. Parasassi, T., Gratton, E., Zajicek, H., Levi, M. & Yu, W. Detecting membrane lipid microdomains by two-photon fluorescence microscopy. IEEE Eng. Med. Biol. Mag. 18, 92–99 (1999).

    CAS  PubMed  Google Scholar 

  148. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. & Jacobson, K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl Acad. Sci. USA 98, 10642–10647 (2001).

    CAS  PubMed  Google Scholar 

  150. Ruan, Q., Cheng, M. A., Levi, M., Gratton, E. & Mantulin, W. W. Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys. J. 87, 1260–1267 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kestenbaum, B. et al. Common genetic variants associate with serum phosphorus concentration. J. Am. Soc. Nephrol. 21, 1223–1232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Monico, C. G. & Milliner, D. S. Genetic determinants of urolithiasis. Nat. Clin. Pract. Nephrol. 8, 151–162 (2012).

    CAS  Google Scholar 

  153. Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Prie, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).

    CAS  PubMed  Google Scholar 

  155. Rajagopal, A. et al. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J. Clin. Endocrinol. Metab. 99, E2451–E2456 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Schlingmann, K. P. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 27, 604–614 (2016).

    CAS  PubMed  Google Scholar 

  157. Braun, D. A. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 11, 664–672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2015).

    CAS  PubMed  Google Scholar 

  159. Dinour, D. et al. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr. Nephrol. 31, 2289–2297 (2016).

    PubMed  Google Scholar 

  160. Magen, D. et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N. Engl. J. Med. 362, 1102–1109 (2010).

    CAS  PubMed  Google Scholar 

  161. Hureaux, M. et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr. Nephrol. 33, 1723–1729 (2018).

    PubMed  Google Scholar 

  162. Fearn, A. et al. Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations. Physiol. Rep. 6, e13715 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Kenny, J. et al. Sotos syndrome, infantile hypercalcemia, and nephrocalcinosis: a contiguous gene syndrome. Pediatr. Nephrol. 26, 1331–1334 (2011).

    PubMed  Google Scholar 

  164. Pronicka, E. et al. Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J. Appl. Genet. 58, 349–353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Amar, A. et al. Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Hum. Genet. 138, 211–219 (2019).

    CAS  PubMed  Google Scholar 

  166. Lapointe, J.-Y. et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int. 69, 2261–2267 (2006).

    CAS  PubMed  Google Scholar 

  167. Köhler, K., Forster, I. C., Lambert, G., Biber, J. & Murer, H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J. Biol. Chem. 275, 26113–26120 (2000).

    PubMed  Google Scholar 

  168. Khan, S. R. & Glenton, P. A. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am. J. Physiol. Renal Physiol. 294, F1109–F1115 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Chau, H., El-Maadawy, S., McKee, M. D. & Tenenhouse, H. S. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J. Bone Miner. Res. 18, 644–657 (2003).

    CAS  PubMed  Google Scholar 

  170. Tenenhouse, H. S., Gauthier, C., Chau, H. & St-Arnaud, R. 1alpha-Hydroxylase gene ablation and Pi supplementation inhibit renal calcification in mice homozygous for the disrupted Npt2a gene. Am. J. Physiol. Renal Physiol. 286, F675–F681 (2004).

    CAS  PubMed  Google Scholar 

  171. Dasgupta, D. et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 25, 2366–2375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 78, 193–201 (2006).

    CAS  PubMed  Google Scholar 

  173. Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaP(i)-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2006).

    CAS  PubMed  Google Scholar 

  174. Bergwitz, C. & Miyamoto, K. I. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 471, 149–163 (2019).

    CAS  PubMed  Google Scholar 

  175. Segawa, H. et al. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J. Am. Soc. Nephrol. 20, 104–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Myakala, K. et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am. J. Physiol. Renal Physiol. 306, F833–F843 (2014).

    CAS  PubMed  Google Scholar 

  177. Corut, A. et al. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet. 79, 650–656 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ferreira Francisco, F. A., Pereira e Silva, J. L., Hochhegger, B., Zanetti, G. & Marchiori, E. Pulmonary alveolar microlithiasis. State-of-the-art review. Respir. Med. 107, 1–9 (2013).

    PubMed  Google Scholar 

  179. Huqun et al. Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis. Am. J. Respir. Crit. Care Med. 175, 263–268 (2007).

    CAS  PubMed  Google Scholar 

  180. Traebert, M., Hattenhauer, O., Murer, H., Kaissling, B. & Biber, J. Expression of type II Na-P(i) cotransporter in alveolar type II cells. Am. J. Physiol. 277, L868–L873 (1999).

    CAS  PubMed  Google Scholar 

  181. Ma, T. et al. Effect of SLC34A2 gene mutation on extracellular phosphorus transport in PAM alveolar epithelial cells. Exp. Ther. Med. 15, 310–314 (2018).

    CAS  PubMed  Google Scholar 

  182. Hernando, N. et al. Intestinal depletion of NaPi-IIb/Slc34a2 in mice: renal and hormonal adaptation. J. Bone Miner. Res. 30, 1925–1937 (2015).

    CAS  PubMed  Google Scholar 

  183. Sabbagh, Y. et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20, 2348–2358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Saito, A. et al. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment. Sci. Transl Med. 7, 313ra181 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Busch, A. et al. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes. Proc. Natl Acad. Sci. USA 91, 8205–8208 (1994).

    CAS  PubMed  Google Scholar 

  186. Forster, I. C., Loo, D. D. & Eskandari, S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am. J. Physiol. 276, F644–F649 (1999).

    CAS  PubMed  Google Scholar 

  187. Bacconi, A., Virkki, L. V., Biber, J., Murer, H. & Forster, I. C. Renouncing electrogenicity is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc. Natl Acad. Sci. USA 102, 12606–12611 (2005).

    CAS  PubMed  Google Scholar 

  188. Forster, I. C. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch. 471, 15–42 (2018).

    PubMed  Google Scholar 

  189. Patti, M., Ghezzi, C. & Forster, I. C. Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step. Pflugers Arch. 465, 1261–1279 (2013).

    CAS  PubMed  Google Scholar 

  190. Bezanilla, F. Gating currents. J. Gen. Physiol. 150, 911–932 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ghezzi, C., Murer, H. & Forster, I. C. Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc). J. Physiol. 587, 4293–4307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Fenollar-Ferrer, C. et al. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1). Biophys. J. 108, 2465–2480 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Forster, I. C., Biber, J. & Murer, H. Proton-sensitive transitions of renal type II Na( + )-coupled phosphate cotransporter kinetics. Biophys. J. 79, 215–230 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Forster, I. C., Virkki, L. V., Bossi, E., Murer, H. & Biber, J. Electrogenic kinetics of a mammalian intestinal Na+/Pi-cotransporter. J. Membr. Biol. 212, 177–190 (2006).

    CAS  PubMed  Google Scholar 

  195. Hartmann, C. M. et al. Transport characteristics of a murine renal Na/Pi-cotransporter. Pflugers Archiv. 430, 830–836 (1995).

    CAS  PubMed  Google Scholar 

  196. Andrini, O., Meinild, A. K., Ghezzi, C., Murer, H. & Forster, I. C. Lithium interactions with Na+-coupled inorganic phosphate cotransporters: insights into the mechanism of sequential cation binding. Am. J. Physiol. Cell Physiol. 302, C539–C554 (2012).

    CAS  PubMed  Google Scholar 

  197. Virkki, L. V., Murer, H. & Forster, I. C. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. J. Gen. Physiol. 127, 539–555 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Forster, I. C., Hernando, N., Biber, J. & Murer, H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 70, 1548–1559 (2006).

    CAS  PubMed  Google Scholar 

  199. Vergara-Jaque, A., Fenollar-Ferrer, C., Mulligan, C., Mindell, J. A. & Forrest, L. R. Family resemblances: a common fold for some dimeric ion-coupled secondary transporters. J. Gen. Physiol. 146, 423–434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Kohler, K., Forster, I. C., Lambert, G., Biber, J. & Murer, H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J. Biol. Chem. 275, 26113–26120 (2000).

    CAS  PubMed  Google Scholar 

  201. Fenollar-Ferrer, C. et al. Structural fold and binding sites of the human Na+-phosphate cotransporter NaPi-II. Biophys. J. 106, 1268–1279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Forster, I. C., Kohler, K., Biber, J. & Murer, H. Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog. Biophys. Mol. Biol. 80, 69–108 (2002).

    CAS  PubMed  Google Scholar 

  203. Mitchell, P. A general theory of membrane transport from studies of bacteria. Nature 180, 134–136 (1957).

    CAS  PubMed  Google Scholar 

  204. Mulligan, C. et al. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat. Struct. Mol. Biol. 23, 256–263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Patti, M., Fenollar-Ferrer, C., Werner, A., Forrest, L. R. & Forster, I. C. Cation interactions and membrane potential induce conformational changes in NaPi-IIb. Biophys. J. 111, 973–988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sorribas, V., Guillen, N. & Sosa, C. Substrates and inhibitors of phosphate transporters: from experimental tools to pathophysiological relevance. Pflugers Arch. 471, 53–65 (2019).

    CAS  PubMed  Google Scholar 

  207. Szczepanska-Konkel, M., Yusufi, A. N., VanScoy, M., Webster, S. K. & Dousa, T. P. Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane. J. Biol. Chem. 261, 6375–6383 (1986).

    CAS  PubMed  Google Scholar 

  208. Villa-Bellosta, R. & Sorribas, V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol. Appl. Pharmacol. 232, 125–134 (2008).

    CAS  PubMed  Google Scholar 

  209. Villa-Bellosta, R., Bogaert, Y. E., Levi, M. & Sorribas, V. Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification. Arterioscler. Thromb. Vasc. Biol. 27, 1030–1036 (2007).

    CAS  PubMed  Google Scholar 

  210. Forster, I., Hernando, N., Biber, J. & Murer, H. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J. Gen. Physiol. 112, 1–18 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. VanScoy, M. et al. Mechanism of phosphaturia elicited by administration of phosphonoformate in vivo. Am. J. Physiol. 255, F984–F994 (1988).

    CAS  PubMed  Google Scholar 

  212. Loghman-Adham, M. & Motock, G. T. Use of phosphonoformic acid to induce phosphaturia in chronic renal failure in rats. Ren. Fail. 18, 855–866 (1996).

    CAS  PubMed  Google Scholar 

  213. Becker, B. N. & Schulman, G. Nephrotoxicity of antiviral therapies. Curr. Opin. Nephrol. Hypertens. 5, 375–379 (1996).

    CAS  PubMed  Google Scholar 

  214. Villa-Bellosta, R. & Sorribas, V. Different effects of arsenate and phosphonoformate on P(i) transport adaptation in opossum kidney cells. Am. J. Physiol. Cell Physiol. 297, C516–C525 (2009).

    CAS  PubMed  Google Scholar 

  215. Kempson, S. A., Turner, S. T., Yusufi, A. N. & Dousa, T. P. Actions of NAD+ on renal brush border transport of phosphate in vivo and in vitro. Am. J. Physiol. 249, F948–F955 (1985).

    CAS  PubMed  Google Scholar 

  216. Katai, K. et al. Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol. Dial. Transplant. 14, 1195–1201 (1999).

    CAS  PubMed  Google Scholar 

  217. Kempson, S. A., Colon-Otero, G., Ou, S. Y., Turner, S. T. & Dousa, T. P. Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J. Clin. Invest. 67, 1347–1360 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Nomura, K. et al. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis. J. Am. Soc. Nephrol. 25, 761–772 (2014).

    CAS  PubMed  Google Scholar 

  219. Miyagawa, A. et al. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int. 93, 1073–1085 (2018).

    CAS  PubMed  Google Scholar 

  220. Labonte, E. D. et al. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J. Am. Soc. Nephrol. 26, 1138–1149 (2015).

    CAS  PubMed  Google Scholar 

  221. King, A. J. et al. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci. Transl Med. 10, eaam6474 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. Filipski, K. J. et al. Discovery of orally bioavailable selective inhibitors of the sodium-phosphate cotransporter NaPi2a (SLC34A1). ACS Med. Chem. Lett. 9, 440–445 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Hortells, L. et al. Identifying early pathogenic events during vascular calcification in uremic rats. Kidney Int. 92, 1384–1394 (2017).

    CAS  PubMed  Google Scholar 

  224. Matsuo, A. et al. Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo. Eur. J. Pharmacol. 517, 111–119 (2005).

    CAS  PubMed  Google Scholar 

  225. Larsson, T. E. et al. NPT-IIb inhibition does not improve hyperphosphatemia in CKD. Kidney Int. Rep. 3, 73–80 (2018).

    PubMed  Google Scholar 

  226. Andrini, O., Ghezzi, C., Murer, H. & Forster, I. C. The leak mode of type II Na(+)-P(i) cotransporters. Channels 2, 346–357 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank X. Wang and K. Myakala, Georgetown University, for help formatting the references.

Reviewer information

Nature Reviews Nephrology thanks M. Ketteler, E. Lederer and H. Segawa, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Moshe Levi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Exome Aggregation Consortium: http://exac.broadinstitute.org

Glossary

Micropuncture

A technique that uses one or more microelectrodes inserted into the glomerulus, renal vessels or specific nephron segments of the kidney in situ to measure glomerular filtration, blood flow or tubular transport processes.

Brush-border membrane vesicles

(BBMVs). Sealed vesicles derived from the brush-border membrane of epithelial cells that are frequently used to study the apical transport of solutes across the apical membrane in vitro. They are obtained upon homogenization of the tissue and precipitation of basolateral membranes with MgCl2.

Lysosomes

Intracellular acidic organelles that contain enzymes that are able to hydrolyse protein, sugars, lipids, RNA and DNA. These enzymes have an acidic optimal pH. Among other substrates, they digest endocytosed material.

Microtubule

A component of the cytoskeleton consisting of polymers of tubulin. They are involved in several cellular processes, including intracellular transport of cargo vesicles to and from the plasma membrane using kinesin or dynein as motor proteins.

Subapical endocytic apparatus

(SEA). A subapical domain of epithelial cells consisting of clathrin-coated pits, endocytic vesicles and membrane-limited tubules called dense apical tubules. These tubules have been proposed to contribute to the sorting and recycling of endocytic cargo and receptors.

Total internal reflection fluorescence (TIRF) microscopy

A technique whereby total internal reflection of the excitation light limits fluorescence detection to approximately 100 nm above the glass or the apical membrane.

Modulation tracking

An orbital tracking method for single particle tracking based on active feedback, which moves microvilli to maintain them within the centre of a scanned pattern.

Raster image correlation spectroscopy

(RICS). A non-invasive technique that detects and quantifies events in a live cell, including the concentration of molecules and diffusion coefficients of molecules.

Number and brightness (N&B) analysis

A technique based on moment analysis for measuring the average number of molecules and brightness in each pixel in fluorescence microscopy images.

Autosomal dominant hypophosphataemic rickets

(ADHR). A rare hereditary disease that has an autosomal dominant mode of inheritance and variable age of onset and is caused by mutations that increase the half-life of FGF23. It is characterized by renal phosphate wasting, hypophosphataemia and inappropriately normal levels of 1,25-dihydroxy-vitamin D3, with patients suffering from bone pain and rickets.

Tumour-induced osteomalacia

Also known as oncogenic hypophosphataemic osteomalacia. A rare syndrome caused by small tumours that secrete fibroblast growth factor 23 (FGF23), matrix extracellular phosphoglycoprotein (MEPE) and secreted frizzled-related protein 4 (sFRP4). It is characterized by hypophosphataemia due to urinary loss of inorganic phosphate, bone pain and fractures and muscle weakness.

Familial tumoural calcinosis

(FTC). Also known as hyperphosphataemic FTC. A rare autosomal hereditary disorder characterized by hyperphosphataemia due to inactivating mutations in the FGF23, GALNT3 or KL genes and by secondary to reduced urinary excretion of inorganic phosphate, normal or elevated 1,25-dihydroxy-vitamin D3 and ectopic calcification.

Hypomorphic

A hypomorphic mutation is one that results in reduced activity of the encoded protein.

Osteoglophonic dysplasia

A rare autosomal dominant disease caused by mutations in the fibroblast growth factor receptor 1 (FGFR1). Patients exhibit hypophosphataemia due to hyperphosphaturia and abnormal bone growth that results in severe craniofacial abnormalities, short and bowed legs and arms and dwarfism.

X-Linked hypophosphataemic rickets

(XLH). An X-linked hypophosphataemic disease secondary to renal loss of inorganic phosphate caused by mutations in phosphate-regulating neutral endopeptidase (PHEX). Patients suffer from rickets, bone and/or dental deformities and have short stature.

Autosomal recessive hypophosphataemic rickets

(ARHR1). Similar biochemical and phenotypical features as autosomal dominant hypophosphataemic rickets, but with a recessive mode of inheritance. It is caused by mutations in DMP1 (among others).

Fluorescence lifetime imaging microscopy and Förster resonance energy transfer

(FLIM-FRET). A microscopy system that enables determination of protein–protein interactions within 10 nm or less in live cells on the basis of changing lifetimes of the fluorophores.

Sphingomyelin

A phospholipid enriched in saturated fatty acids that is part of the lipid rafts.

BBM fluidity

A measure of the lipid dynamics of the apical brush-border membrane.

Fluorescence anisotropy of diphenylhexatriene

Measurement of the membrane fluidity. A higher value indicates a less fluid membrane.

Lipid microdomains

Also known as lipid rafts. Regions of the membrane that may be smaller than the 200 nm size of the diffraction barrier and that may be dynamic in nature.

Laurdan fluorescence spectroscopy

Laurdan is a fluorescent molecule that is highly sensitive to water penetration and cholesterol within the membrane lipid bilayer.

Glucosylceramide

A membrane glycosphingolipid that is associated with lipid raft formation.

Multiphoton excitation (MPE) fluorescence microscopy

A nonlinear microscopy system in which the exciting light is provided by a two-photon near-infrared laser.

Scanning fluorescence correlation spectroscopy

(SFCS). A technique that performs multiple fluorescence correlation spectroscopy measurements simultaneously by rapidly directing the excitation laser beam in a uniform (circular) scan across the bilayer of the cell membrane in a repetitive fashion. SFCS provides a quantitative and highly sensitive method to study protein diffusion and protein–membrane interactions.

Sotos syndrome

An inborn syndrome characterized by accelerated body length growth, microcephalus and delayed cognitive and motor development. It is caused by deletions on chromosome 5q35 encompassing the NSD1 gene neighbouring the SLC34A1 gene locus.

Compound heterozygosity

Two different recessive mutations of a particular gene.

Minor allele frequency

The frequency at which the second most common allele occurs in a given population.

Hereditary hypophosphataemic rickets with hypercalciuria

(HHRH). An autosomal recessive form caused by mutations in SLC34A3 and characterized by reduced renal phosphate reabsorption, hypophosphataemia, and rickets. It can be distinguished from other forms of hypophosphataemia by increased serum levels of 1,25-dihydroxy-vitamin D3 resulting in hypercalciuria.

Pulmonary alveolar microlithiasis

(PAM). A chronic, slowly fibrosing lung disease caused and characterized by calcium-phosphate microcrystal depositions in the alveolar space.

Cor pulmonale

Right ventricular enlargement secondary to a lung disorder that causes pulmonary arterial hypertension.

Testicular microlithiasis

An asymptomatic deposition of small crystals in testes. It may be associated with the risk of infertility or testicular cancer, but a causal link has not been established to date.

Electrogenic

A membrane transport process that involves net charge transfer accompanying substrate transport.

Electroneutral

A membrane transport process that involves no net charge transfer accompanying substrate transport.

Capacitive currents

Transient currents induced by changes in membrane potential that result from charging and discharging the membrane capacitance or displacement of mobile charges within the transmembrane electric field.

Voltage clamp fluorometry

(VCF). A technique in which time-resolved changes in fluorescence that reflect changes in the microenvironment of fluorophores linked to engineered cysteine residues at the periphery of the protein are measured. The changes in fluorescence can be interpreted as conformational changes induced by the membrane potential and cation availability.

Secondary topology

The orientation of membrane-spanning segments (for example, α-helices) and other secondary structures (for example, linkers and β-sheets) with respect to the inner and outer faces of the membrane.

Substituted cysteine accessibility (SCAM) technique

A technique used to determine secondary topological features by assessing the effect of linking methanethiosulfonate reagents to novel cysteines substituted at sites predicted to be of functional importance.

Repeat swap strategy

A homology modelling strategy applied to membrane transporters that contain repeat units. These are used as templates to predict alternative conformations not available from the crystal structure of the homologous protein.

K i

The inhibitory constant for competitive inhibitors, which is related to the affinity of the inhibitor for the substrate binding site and is independent of the substrate concentration.

Na+ slippage

An older term used to describe uncoupled Na+ leak current mediated by Na+-coupled transporters in the absence of substrate (for example, inorganic phosphate).

IC50

The half-maximal inhibitory concentration — that is, the concentration of inhibitor that reduces transport (or other quantifiable physiological process) to a half at a specific concentration of the substrate that is being transported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levi, M., Gratton, E., Forster, I.C. et al. Mechanisms of phosphate transport. Nat Rev Nephrol 15, 482–500 (2019). https://doi.org/10.1038/s41581-019-0159-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0159-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing