Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental models of acute kidney injury for translational research

Abstract

Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.

Key points

  • Human induced pluripotent stem cell-derived kidney organoid models of toxin-induced acute kidney injury (AKI) are amenable to high-throughput drug discovery and may provide insight into inter-individual variations in responses to therapeutic interventions.

  • Zebrafish models of toxin-induced AKI can be used for high-throughput, rapid therapeutic discovery before translation into mammalian systems.

  • Ischaemic, cardiac, toxin and sepsis-associated rodent models of AKI can be used to reflect diverse pathophysiologies in human AKI, validate therapeutic targets using genetic studies and explore distant organ effects of AKI.

  • Large animal models provide opportunities to more closely model human AKI pathophysiology and pharmacology, with increasingly complex, layered models of injury.

  • The discovery of molecular subtypes of human AKI will drive the development of focused preclinical therapeutic strategies to target defined AKI pathophysiologies.

  • We recommend multidisciplinary, bench-to-bedside approaches to the development and design of preclinical research pipelines using multiple models and species to optimize the potential for translation of findings into therapies for human AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rodent models of cardiorenal syndrome type 1.
Fig. 2: Individualized therapeutic development plans for AKI.

Similar content being viewed by others

References

  1. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical Decision Support for In-Hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article  PubMed  Google Scholar 

  2. Kellum, J. A., Lameire, N. & Group, K. A. G. W. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care 17, 204 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article  PubMed  Google Scholar 

  4. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Tenzi, J. et al. Renal histopathology in critically ill patients with septic acute kidney injury (S-AKI). J. Crit. Care 68, 38–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Neugarten, J. & Golestaneh, L. Female sex reduces the risk of hospital-associated acute kidney injury: a meta-analysis. BMC Nephrol. 19, 314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neugarten, J. & Golestaneh, L. Influence of sex on the progression of chronic kidney disease. Mayo Clin. Proc. 94, 1339–1356 (2019).

    Article  PubMed  Google Scholar 

  9. Skrypnyk, N. I., Siskind, L. J., Faubel, S. & de Caestecker, M. P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol. Renal Physiol. 310, F972–F984 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Przepiorski, A., Crunk, A. E., Espiritu, E. B., Hukriede, N. A. & Davidson, A. J. The utility of human kidney organoids in modeling kidney disease. Semin. Nephrol. 40, 188–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Przepiorski, A. et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep. 11, 470–484 (2018).

    Article  CAS  Google Scholar 

  16. Subramanian, A. et al. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat. Commun. 10, 5462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taguchi, A. & Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–746.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Tsujimoto, H. et al. A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells. Cell Rep. 31, 107476 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Uchimura, K., Wu, H., Yoshimura, Y. & Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 33, 108514 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Bajaj, P. et al. Human pluripotent stem cell-derived kidney model for nephrotoxicity studies. Drug Metab. Dispos. 46, 1703–1711 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang, H. M. et al. Effective reconstruction of functional organotypic kidney spheroid for in vitro nephrotoxicity studies. Sci. Rep. 9, 17610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Digby, J. L. M., Vanichapol, T., Przepiorski, A., Davidson, A. J. & Sander, V. Evaluation of cisplatin-induced injury in human kidney organoids. Am. J. Physiol. Renal Physiol. 318, F971–F978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lemos, D. R. et al. Interleukin-1beta Activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sweeney, D. E. et al. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol. Pharmacol. 80, 147–154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soo, J. Y., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 10, 766–779 (2018).

    Article  Google Scholar 

  30. Garreta, E. et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat. Mater. 18, 397–405 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Article  Google Scholar 

  33. Lin, N. Y. C. et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl Acad. Sci. USA 116, 5399–5404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reimschuessel, R., Bennett, R. O., May, E. B. & Lipsky, M. M. Development of newly formed nephrons in the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity. Toxicol. Pathol. 18, 32–38 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Reimschuessel, R. & Williams, D. Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity. Ren. Fail. 17, 101–106 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Reimschuessel, R. A fish model of renal regeneration and development. ILAR J. 42, 285–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Wingert, R. A. & Davidson, A. J. The zebrafish pronephros: a model to study nephron segmentation. Kidney Int. 73, 1120–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Davidson, A. J. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr. Nephrol. 26, 1435–1443 (2011).

    Article  PubMed  Google Scholar 

  39. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, W., Boucher, R. C., Bollig, F., Englert, C. & Hildebrandt, F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am. J. Physiol. Renal Physiol. 299, F1040–F1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brilli Skvarca, L. et al. Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. Dis. Model Mech. 12, dmm037390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cianciolo Cosentino, C. et al. Histone deacetylase inhibitor enhances recovery after AKI. J. Am. Soc. Nephrol. 24, 943–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hentschel, D. M. et al. Acute renal failure in zebrafish: a novel system to study a complex disease. Am. J. Physiol. Renal Physiol. 288, F923–F929 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Chiba, T. et al. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol. 27, 495–508 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Yin, W. et al. Mammalian target of rapamycin mediates kidney injury molecule 1-dependent tubule injury in a surrogate model. J. Am. Soc. Nephrol. 27, 1943–1957 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Sanker, S. et al. Development of high-content assays for kidney progenitor cell expansion in transgenic zebrafish. J. Biomol. Screen. 18, 1193–1202 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Skrypnyk, N. I. et al. Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury. Am. J. Physiol. Renal Physiol. 310, F705–F716 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Wen, X. et al. Time-dependent effects of histone deacetylase inhibition in sepsis-associated acute kidney injury. Intensive Care Med. Exp. 8, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Clatworthy, A. E. et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect. Immun. 77, 1293–1303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wen, X. et al. A zebrafish model of infection-associated acute kidney injury. Am. J. Physiol. Renal Physiol. 315, F291–F299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Opsahl, J. A., Abraham, P. A. & Keane, W. F. Angiotensin-converting enzyme inhibitors in chronic renal failure. Drugs 39 (Suppl. 2), 23–32 (1990).

    Article  PubMed  Google Scholar 

  53. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Heyman, S. N., Rosen, S. & Rosenberger, C. Animal models of renal dysfunction: acute kidney injury. Expert Opin. Drug Discov. 4, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 117, 15874–15883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cippa, P. E. et al. Transcriptional trajectories of human kidney injury progression. JCI Insight 3, e123151 (2018).

    Article  PubMed Central  Google Scholar 

  57. Wei, Q. & Dong, Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am. J. Physiol. Renal Physiol. 303, F1487–F1494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skrypnyk, N. I., Harris, R. C. & de Caestecker, M. P. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J. Vis. Exp. https://doi.org/10.3791/50495 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zager, R. A. & Altschuld, R. Body temperature: an important determinant of severity of ischemic renal injury. Am. J. Physiol. 251, F87–F93 (1986).

    CAS  PubMed  Google Scholar 

  60. Shanley, P. F. et al. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am. J. Pathol. 122, 462–468 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, H. T., Ota-Setlik, A., Fu, Y., Nasr, S. H. & Emala, C. W. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 101, 1313–1324 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soranno, D. E. et al. Acute kidney injury results in long-term diastolic dysfunction that is prevented by histone deacetylase inhibition. JACC Basic. Transl. Sci. 6, 119–133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Le Clef, N., Verhulst, A., D’Haese, P. C. & Vervaet, B. A. Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice. PLoS One 11, e0152153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thompson, R. H. et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 58, 340–345 (2010).

    Article  PubMed  Google Scholar 

  66. Thompson, R. H. et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology 79, 356–360 (2012).

    Article  PubMed  Google Scholar 

  67. Scarfe, L. et al. Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 317, F1068–F1080 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Menshikh, A. et al. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am. J. Physiol. Renal Physiol. 317, F1383–F1397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010). 1p following 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Finn, W. F. Enhanced recovery from postischemic acute renal failure. Micropuncture studies in the rat. Circ. Res. 46, 440–448 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Soranno, D. E. et al. Matching human unilateral AKI, a reverse translational approach to investigate kidney recovery after ischemia. J. Am. Soc. Nephrol. 30, 990–1005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clements, M. E., Chaber, C. J., Ledbetter, S. R. & Zuk, A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS One 8, e70464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, J. et al. Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J. Biol. Chem. 281, 20349–20356 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Aufhauser, D. D. Jr et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J. Clin. Invest. 126, 1968–1977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Peng, J. et al. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int. 87, 137–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Gao, G. et al. TNF-alpha mediates increased susceptibility to ischemic AKI in diabetes. Am. J. Physiol. Renal Physiol. 304, F515–F521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi, H., Patschan, D., Epstein, T., Goligorsky, M. S. & Winaver, J. Delayed recovery of renal regional blood flow in diabetic mice subjected to acute ischemic kidney injury. Am. J. Physiol. Renal Physiol. 293, F1512–F1517 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Polichnowski, A. J. et al. Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J. Am. Soc. Nephrol. 25, 1496–1507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vandenberghe, W. et al. Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 6, 116–128 (2016).

    Article  PubMed  Google Scholar 

  81. Uduman, J. Epidemiology of cardiorenal syndrome. Adv. Chronic Kidney Dis. 25, 391–399 (2018).

    Article  PubMed  Google Scholar 

  82. Vallabhajosyula, S. et al. Sex disparities in acute kidney injury complicating acute myocardial infarction with cardiogenic shock. ESC Heart Fail. 6, 874–877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Neugarten, J., Sandilya, S., Singh, B. & Golestaneh, L. Sex and the risk of AKI following cardio-thoracic surgery: a meta-analysis. Clin. J. Am. Soc. Nephrol. 11, 2113–2122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chang, D. et al. Noninvasive identification of renal hypoxia in experimental myocardial infarctions of different sizes by using BOLD MR imaging in a mouse model. Radiology 286, 129–139 (2018).

    Article  PubMed  Google Scholar 

  85. Lekawanvijit, S. et al. Myocardial infarction impairs renal function, induces renal interstitial fibrosis, and increases renal KIM-1 expression: implications for cardiorenal syndrome. Am. J. Physiol. Heart Circ. Physiol. 302, H1884–H1893 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lu, J. et al. Abrogation of lectin-like oxidized LDL receptor-1 attenuates acute myocardial ischemia-induced renal dysfunction by modulating systemic and local inflammation. Kidney Int. 82, 436–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ranganathan, P. et al. MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 309, F551–F558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rutledge, C. A. et al. A novel ultrasound-guided mouse model of sudden cardiac arrest. PLoS One 15, e0237292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsushita, K. et al. The acute kidney injury to chronic kidney disease transition in a mouse model of acute cardiorenal syndrome emphasizes the role of inflammation. Kidney Int. 97, 95–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Li, X. et al. Acute renal venous obstruction is more detrimental to the kidney than arterial occlusion: implication for murine models of acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F519–F525 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Hutchens, M. P. et al. Estrogen is renoprotective via a non-receptor dependent mechanism after cardiac arrest in vivo. Anesthesiology 112, 395–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Burne-Taney, M. J. et al. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am. J. Physiol. Renal Physiol. 285, F87–F94 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Q. et al. Tolllike receptor 4 contributes to acute kidney injury after cardiopulmonary resuscitation in mice. Mol. Med. Rep. 14, 2983–2990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ikeda, M. et al. Estrogen administered after cardiac arrest and cardiopulmonary resuscitation ameliorates acute kidney injury in a sex- and age-specific manner. Crit. Care 19, 332 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zeiner, A. et al. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation 60, 253–261 (2004).

    Article  PubMed  Google Scholar 

  96. Neyra, J. A. et al. Kidney tubular damage and functional biomarkers in acute kidney injury following cardiac surgery. Kidney Int. Rep. 4, 1131–1142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ballaux, P. K., Gourlay, T., Ratnatunga, C. P. & Taylor, K. M. A literature review of cardiopulmonary bypass models for rats. Perfusion 14, 411–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Yu, L. et al. The deep hypothermic circulatory arrest causes more kidney malfunctions based on a novel rabbit model. Ann. Saudi Med. 34, 532–540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Madrahimov, N. et al. Cardiopulmonary bypass in a mouse model: a novel approach. J. Vis. Exp. https://doi.org/10.3791/56017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, G. et al. Erythropoietin attenuates cardiopulmonary bypass-induced renal inflammatory injury by inhibiting nuclear factor-kappaB p65 expression. Eur. J. Pharmacol. 689, 154–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Koning, N. J. et al. Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: the role of hemodilution. Am. J. Physiol. Heart Circ. Physiol. 310, H550–H558 (2016).

    Article  PubMed  Google Scholar 

  102. Darby, P. J. et al. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass. Perfusion 28, 504–511 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Ohno, K. et al. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. Am. J. Physiol. Heart Circ. Physiol. 313, H1130–H1142 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Kimura, Y. et al. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J. Diabetes Investig. 10, 933–946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh, A. P. et al. Animal models of acute renal failure. Pharmacol. Rep. 64, 31–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Ortiz, A. et al. Translational value of animal models of kidney failure. Eur. J. Pharmacol. 759, 205–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Doi, K. et al. Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome. Kidney Int. 74, 1017–1025 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Souza, A. C. et al. TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol. Rep. 3, e12558. (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Novitskaya, T. et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am. J. Physiol. Renal Physiol. 306, F496–F504 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Pabla, N. & Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73, 994–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Sharp, C. N. & Siskind, L. J. Developing better mouse models to study cisplatin-induced kidney injury. Am. J. Physiol. Renal Physiol. 313, F835–F841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ghosh, S. Cisplatin: the first metal based anticancer drug. Bioorg. Chem. 88, 102925 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Bosch, X., Poch, E. & Grau, J. M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med. 361, 62–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Stewart, J. H. et al. The pattern of excess cancer in dialysis and transplantation. Nephrol. Dial. Transpl. 24, 3225–3231 (2009).

    Article  Google Scholar 

  115. Latcha, S. et al. Long-term renal outcomes after cisplatin treatment. Clin. J. Am. Soc. Nephrol. 11, 1173–1179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sharp, C. N. et al. Repeated administration of low-dose cisplatin in mice induces fibrosis. Am. J. Physiol. Renal Physiol. 310, F560–F568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharp, C. N. et al. Subclinical kidney injury induced by repeated cisplatin administration results in progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 315, F161–F172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. George, B., Joy, M. S. & Aleksunes, L. M. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp. Biol. Med. 243, 272–282 (2018).

    Article  CAS  Google Scholar 

  119. Sears, S. M. et al. C57BL/6 mice require a higher dose of cisplatin to induce renal fibrosis and CCL2 correlates with cisplatin-induced kidney injury. Am. J. Physiol. Renal Physiol. 319, F674–F685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zha, M. et al. The circadian clock gene Bmal1 facilitates cisplatin-induced renal injury and hepatization. Cell Death Dis. 11, 446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ravichandran, K. et al. CD4 T cell knockout does not protect against kidney injury and worsens cancer. J. Mol. Med. 94, 443–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Van Avondt, K., Nur, E. & Zeerleder, S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 15, 671–692 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Panizo, N., Rubio-Navarro, A., Amaro-Villalobos, J. M., Egido, J. & Moreno, J. A. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press. Res. 40, 520–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Boutaud, O. & Roberts, L. J. 2nd Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure. Free Radic. Biol. Med. 51, 1062–1067 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Kerchberger, V. E. & Ware, L. B. The role of circulating cell-free hemoglobin in sepsis-associated acute kidney injury. Semin. Nephrol. 40, 148–159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. O’Neal, J. B., Shaw, A. D. & Billings, F. T. 4th Acute kidney injury following cardiac surgery: current understanding and future directions. Crit. Care 20, 187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kawai, H. et al. Experimental glycerol myopathy: a histological study. Acta Neuropathol. 80, 192–197 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. McMahon, G. M., Zeng, X. & Waikar, S. S. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern. Med. 173, 1821–1828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Okamura, D. M. & Pennathur, S. The balance of powers: redox regulation of fibrogenic pathways in kidney injury. Redox Biol. 6, 495–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Belliere, J. et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J. Am. Soc. Nephrol. 26, 1363–1377 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Soares, T. J., Costa, R. S., Volpini, R. A., Da Silva, C. G. & Coimbra, T. M. Long-term evolution of the acute tubular necrosis (ATN) induced by glycerol: role of myofibroblasts and macrophages. Int. J. Exp. Pathol. 83, 165–172 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Faulk, T. et al. Rhabdomyolysis among critically Ill combat casualties: long-term outcomes. Am. J. Nephrol. 48, 399–405 (2018).

    Article  PubMed  Google Scholar 

  133. Bolanos, J. A. et al. Outcomes after post-traumatic AKI requiring RRT in United States military service members. Clin. J. Am. Soc. Nephrol. 10, 1732–1739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Peerapornratana, S., Manrique-Caballero, C. L., Gomez, H. & Kellum, J. A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 96, 1083–1099 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Manrique-Caballero, C. L., Del Rio-Pertuz, G. & Gomez, H. Sepsis-associated acute kidney injury. Crit. Care Clin. 37, 279–301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Iskander, K. N. et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev. 93, 1247–1288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hotchkiss, R. S., Coopersmith, C. M., McDunn, J. E. & Ferguson, T. A. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Legrand, M. et al. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med. 37, 1534–1542 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brealey, D. et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R491–R497 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 5, 316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. El-Achkar, T. M. et al. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1034–F1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Doi, K. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 20, 1217–1221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Street, J. M. et al. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am. J. Physiol. Renal Physiol. 314, F788–F797 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Alverdy, J. C., Keskey, R. & Thewissen, R. Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infect. Immun. https://doi.org/10.1128/IAI.00942-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rittirsch, D., Huber-Lang, M. S., Flierl, M. A. & Ward, P. A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Miyaji, T. et al. Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney Int. 64, 1620–1631 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Doi, K. et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 73, 1266–1274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Leelahavanichkul, A. et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 80, 1198–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Levy, E. M., Viscoli, C. M. & Horwitz, R. I. The effect of acute renal failure on mortality. A cohort analysis. JAMA 275, 1489–1494 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Faubel, S. Have we reached the limit of mortality benefit with our approach to renal replacement therapy in acute kidney injury? Am. J. Kidney Dis. 62, 1030–1033 (2013).

    Article  PubMed  Google Scholar 

  151. Faubel, S. & Shah, P. B. Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv. Chronic Kidney Dis. 23, 179–185 (2016).

    Article  PubMed  Google Scholar 

  152. Faubel, S. & Edelstein, C. L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 12, 48–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Hoke, T. S. et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 18, 155–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Andres-Hernando, A. et al. Cytokine production increases and cytokine clearance decreases in mice with bilateral nephrectomy. Nephrol. Dial. Transpl. 27, 4339–4347 (2012).

    Article  CAS  Google Scholar 

  155. Dennen, P. et al. Urine interleukin-6 is an early biomarker of acute kidney injury in children undergoing cardiac surgery. Crit. Care 14, R181 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Klein, C. L. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int. 74, 901–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Hassoun, H. T. et al. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am. J. Physiol. Renal Physiol. 293, F30–F40 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Karimi, Z. et al. Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats. Ren. Fail. 38, 1503–1515 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Walcher, A., Faubel, S., Keniston, A. & Dennen, P. In critically Ill patients requiring CRRT, AKI Is associated with increased respiratory failure and death versus ESRD. Ren. Fail. 33, 935–942 (2011).

    Article  PubMed  Google Scholar 

  160. Waikar, S. S., Liu, K. D. & Chertow, G. M. The incidence and prognostic significance of acute kidney injury. Curr. Opin. Nephrol. Hypertens. 16, 227–236 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bhargava, R. et al. Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-alpha antibodies. PLoS One 8, e79037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Teixeira, J. P., Ambruso, S., Griffin, B. R. & Faubel, S. Pulmonary consequences of acute kidney injury. Semin. Nephrol. 39, 3–16 (2019).

    Article  PubMed  Google Scholar 

  163. Andres-Hernando, A. et al. Prolonged acute kidney injury exacerbates lung inflammation at 7 days post-acute kidney injury. Physiol. Rep. 2, e12084 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cruz, D. N., Gheorghiade, M., Palazzuoli, A., Ronco, C. & Bagshaw, S. M. Epidemiology and outcome of the cardio-renal syndrome. Heart Fail. Rev. 16, 531–542 (2011).

    Article  PubMed  Google Scholar 

  165. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  166. Ronco, C., House, A. A. & Haapio, M. Cardiorenal and renocardiac syndromes: the need for a comprehensive classification and consensus. Nat. Clin. Pract. Nephrol. 4, 310–311 (2008).

    Article  PubMed  Google Scholar 

  167. Gammelager, H. et al. Three-year risk of cardiovascular disease among intensive care patients with acute kidney injury: a population-based cohort study. Crit. Care 18, 492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sumida, M. et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J. Am. Soc. Nephrol. 26, 2378–2387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fox, B. M. et al. Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney Int. 95, 590–610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kelly, K. J. Distant effects of experimental renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 14, 1549–1558 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Martinez-Martinez, E. et al. Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 66, 767–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Go, A. S. et al. Acute kidney injury and risk of heart failure and atherosclerotic events. Clin. J. Am. Soc. Nephrol. 13, 833–841 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Giraud, S. et al. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J. Biomed. Biotechnol. 2011, 532127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fairbairn, L., Kapetanovic, R., Sester, D. P. & Hume, D. A. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J. Leukoc. Biol. 89, 855–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Packialakshmi, B., Stewart, I. J., Burmeister, D. M., Chung, K. K. & Zhou, X. Large animal models for translational research in acute kidney injury. Ren. Fail. 42, 1042–1058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Adams, P. L., Adams, F. F., Bell, P. D. & Navar, L. G. Impaired renal blood flow autoregulation in ischemic acute renal failure. Kidney Int. 18, 68–76 (1980).

    Article  CAS  PubMed  Google Scholar 

  178. Snoeijs, M. G. et al. Addition of a water-soluble propofol formulation to preservation solution in experimental kidney transplantation. Transplantation 92, 296–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Ekser, B., Rigotti, P., Gridelli, B. & Cooper, D. K. Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol. 21, 87–92 (2009).

    Article  PubMed  Google Scholar 

  180. Xu, M. et al. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death. Am. J. Transpl. 18, 855–867 (2018).

    Article  CAS  Google Scholar 

  181. Neumayer, H. H., Blossei, N., Seherr-Thohs, U. & Wagner, K. Amelioration of postischaemic acute renal failure in conscious dogs by human atrial natriuretic peptide. Nephrol. Dial. Transpl. 5, 32–38 (1990).

    Article  CAS  Google Scholar 

  182. Nilsson, K. F., Sandin, J., Gustafsson, L. E. & Frithiof, R. The novel nitric oxide donor PDNO attenuates ovine ischemia-reperfusion induced renal failure. Intensive Care Med. Exp. 5, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zahran, M. H. et al. Renoprotective effect of local sildenafil administration in renal ischaemia-reperfusion injury: a randomised controlled canine study. Arab. J. Urol. 17, 150–159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. O’Kane, D. et al. Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals 31, 821–834 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Woolley, J. L. et al. Effect of the calcium entry blocker verapamil on renal ischemia. Crit. Care Med. 16, 48–51 (1988).

    Article  CAS  PubMed  Google Scholar 

  186. Favreau, F. et al. Expression and modulation of translocator protein and its partners by hypoxia reoxygenation or ischemia and reperfusion in porcine renal models. Am. J. Physiol. Renal Physiol. 297, F177–F190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hunter, J. P., Hosgood, S. A., Barlow, A. D. & Nicholson, M. L. Ischaemic conditioning reduces kidney injury in an experimental large-animal model of warm renal ischaemia. Br. J. Surg. 102, 1517–1525 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Amdisen, C. et al. Testing danegaptide effects on kidney function after ischemia/reperfusion injury in a new porcine two week model. PLoS One 11, e0164109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Castellano, G. et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am. J. Pathol. 176, 1648–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sølling, C. et al. Erythropoietin administration is associated with short-term improvement in glomerular filtration rate after ischemia-reperfusion injury. Acta Anaesthesiol. Scand. 55, 185–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. GIBBON, J. H. Jr Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch. Surg. 34, 1105–1131 (1937).

    Article  Google Scholar 

  192. DiVincenti, L. Jr, Westcott, R. & Lee, C. Sheep (Ovis aries) as a model for cardiovascular surgery and management before, during, and after cardiopulmonary bypass. J. Am. Assoc. Lab. Anim. Sci. 53, 439–448 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Lankadeva, Y. R. et al. Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure. Acta Physiol. 231, e13596 (2021).

    CAS  Google Scholar 

  194. Lannemyr, L. et al. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology 126, 205–213 (2017).

    Article  PubMed  Google Scholar 

  195. Lankadeva, Y. R. et al. Strategies that improve renal medullary oxygenation during experimental cardiopulmonary bypass may mitigate postoperative acute kidney injury. Kidney Int. 95, 1338–1346 (2019).

    Article  PubMed  Google Scholar 

  196. Lankadeva, Y. R. et al. Influence of blood hemoglobin concentration on renal hemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep. Acta Physiol. 231, e13583 (2020).

    Google Scholar 

  197. Qureshi, S. H., Patel, N. N. & Murphy, G. J. Vascular endothelial cell changes in postcardiac surgery acute kidney injury. Am. J. Physiol. Renal Physiol. 314, F726–F735 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Murphy, G. J. et al. An initial evaluation of post-cardiopulmonary bypass acute kidney injury in swine. Eur. J. Cardiothorac. Surg. 36, 849–855 (2009).

    Article  PubMed  Google Scholar 

  199. Shi, N. et al. The association between obesity and risk of acute kidney injury after cardiac surgery. Front. Endocrinol. 11, 534294 (2020).

    Article  Google Scholar 

  200. O’Sullivan, K. E. et al. The effect of obesity on acute kidney injury after cardiac surgery. J. Thorac. Cardiovasc. Surg. 150, 1622–1628 (2015).

    Article  PubMed  Google Scholar 

  201. Billings, F. T. et al. Obesity and oxidative stress predict AKI after cardiac surgery. J. Am. Soc. Nephrol. 23, 1221–1228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Stamou, S. C. et al. Effect of body mass index on outcomes after cardiac surgery: is there an obesity paradox? Ann. Thorac. Surg. 91, 42–47 (2011).

    Article  PubMed  Google Scholar 

  203. Sleeman, P. et al. High fat feeding promotes obesity and renal inflammation and protects against post cardiopulmonary bypass acute kidney injury in swine. Crit. Care 17, R262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Santiago, M. J. et al. Cisplatin-induced non-oliguric acute kidney injury in a pediatric experimental animal model in piglets. PLoS One 11, e0149013 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, S. Y., Zhang, C. Y., Cai, G. Y. & Chen, X. M. Method used to establish a large animal model of drug-induced acute kidney injury. Exp. Biol. Med. 246, 986–995 (2021).

    Article  CAS  Google Scholar 

  206. Zheng, J. S. et al. Screening of early diagnostic markers of gentamicin-induced acute kidney injury in canines. J. Vet. Res. 63, 405–411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Garry, F., Chew, D. J. & Hoffsis, G. F. Urinary indices of renal function in sheep with induced aminoglycoside nephrotoxicosis. Am. J. Vet. Res. 51, 420–427 (1990).

    CAS  PubMed  Google Scholar 

  208. Cui, J. et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci. Rep. 5, 11256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Margulies, K. B., McKinley, L. J., Cavero, P. G. & Burnett, J. C. Jr. Induction and prevention of radiocontrast-induced nephropathy in dogs with heart failure. Kidney Int. 38, 1101–1108 (1990).

    Article  CAS  PubMed  Google Scholar 

  210. Wu, J. et al. Retinoic acid attenuates contrast-induced acute kidney injury in a miniature pig model. Biochem. Biophys. Res. Commun. 512, 163–169 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Tang, W. et al. Renal protective effects of early continuous venovenous hemofiltration in rhabdomyolysis: improved renal mitochondrial dysfunction and inhibited apoptosis. Artif. Organs 37, 390–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  212. Rajagopalan, P. R., Reines, H. D., Pulliam, C., Fitts, C. T. & LeVeen, H. H. Reversal of acute renal failure using hemodilution with hydroxyethyl starch. J. Trauma. 23, 795–800 (1983).

    Article  CAS  PubMed  Google Scholar 

  213. van Griensven, M. et al. Protective effects of the complement inhibitor compstatin cp40 in hemorrhagic shock. Shock 51, 78–87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sondeen, J. L., Gonzaludo, G. A., Loveday, J. A., Rodkey, W. G. & Wade, C. E. Hypertonic saline/dextran improves renal function after hemorrhage in conscious swine. Resuscitation 20, 231–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  215. Hoareau, G. L. et al. Renal effects of three endoaortic occlusion strategies in a swine model of hemorrhagic shock. Injury 50, 1908–1914 (2019).

    Article  PubMed  Google Scholar 

  216. Smith, S. et al. Aggressive treatment of acute kidney injury and hyperkalemia improves survival in a combat relevant trauma model in swine. Am. J. Surg. 219, 860–864 (2020).

    Article  PubMed  Google Scholar 

  217. Wong, Y. C. et al. Potential biomarker panel for predicting organ dysfunction and acute coagulopathy in a polytrauma porcine model. Shock 43, 157–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Fröhlich, M. et al. Induced hypothermia reduces the hepatic inflammatory response in a swine multiple trauma model. J. Trauma. Acute Care Surg. 76, 1425–1432 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Hasslacher, J. et al. Acute kidney injury and mild therapeutic hypothermia in patients after cardiopulmonary resuscitation — a post hoc analysis of a prospective observational trial. Crit. Care 22, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Sullivan, T. P., Eaglstein, W. H., Davis, S. C. & Mertz, P. The pig as a model for human wound healing. Wound Repair. Regen. 9, 66–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  221. Khorram-Sefat, R. et al. The therapeutic effect of C1-inhibitor on gut-derived bacterial translocation after thermal injury. Shock 9, 101–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  222. Guenther, T. M. et al. High versus low volume fluid resuscitation strategies in a porcine model (sus scrofa) of combined thermal and traumatic brain injury. Shock 55, 536–544 (2020).

    Article  CAS  Google Scholar 

  223. Burmeister, D. M. et al. Impact of isolated burns on major organs: a large animal model characterized. Shock 46, 137–147 (2016).

    Article  PubMed  Google Scholar 

  224. Gómez, B. I. et al. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: evidence from a porcine model. PLoS One 13, e0195615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mason, S. A., Nathens, A. B. & Jeschke, M. G. “Hold the pendulum: rates of acute kidney injury are increased in patients who receive resuscitation volumes less than predicted by the Parkland Equation”. Ann. Surg. 266, e108 (2017).

    Article  PubMed  Google Scholar 

  226. Christenson, J. T. & Owunwanne, A. Leucocyte sequestration in endotoxemia and the effect of low-molecular-weight dextran. Eur. J. Nucl. Med. 17, 28–33 (1990).

    Article  CAS  PubMed  Google Scholar 

  227. Kampmeier, T. G. et al. Effects of resuscitation with human albumin 5%, hydroxyethyl starch 130/0.4 6%, or crystalloid on kidney damage in an ovine model of septic shock. Br. J. Anaesth. 121, 581–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Linton, A. L., Walker, J. F., Lindsay, R. M. & Sibbald, W. J. Acute renal failure and tubular damage due to sepsis in an animal model. Proc. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 21, 837–842 (1985).

    CAS  Google Scholar 

  229. Di Giantomasso, D., Morimatsu, H., May, C. N. & Bellomo, R. Intrarenal blood flow distribution in hyperdynamic septic shock: Effect of norepinephrine. Crit. Care Med. 31, 2509–2513 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Langenberg, C., Gobe, G., Hood, S., May, C. N. & Bellomo, R. Renal histopathology during experimental septic acute kidney injury and recovery. Crit. Care Med. 42, e58–e67 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Lankadeva, Y. R., Kosaka, J., Evans, R. G., Bellomo, R. & May, C. N. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin II therapy in septic acute kidney injury. Crit. Care Med. 46, e41–e48 (2018).

    Article  PubMed  Google Scholar 

  232. Lankadeva, Y. R. et al. Effects of fluid bolus therapy on renal perfusion, oxygenation, and function in early experimental septic kidney injury. Crit. Care Med. 47, e36–e43 (2019).

    Article  PubMed  Google Scholar 

  233. Benes, J. et al. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit. Care 15, R256 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Wang, H. et al. Improvement of cytokine response and survival time by bioartificial kidney therapy in acute uremic pigs with multi-organ dysfunction. Int. J. Artif. Organs 33, 526–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  235. Matejovic, M. et al. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury. BMC Nephrol. 18, 183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Vassal, O. et al. Renal haemodynamic response to amino acids infusion in an experimental porcine model of septic shock. Acta Anaesthesiol. Scand. 59, 598–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  237. Matejovic, M. et al. Renal proteomic responses to severe sepsis and surgical trauma: dynamic analysis of porcine tissue biopsies. Shock 46, 453–464 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Merz, T. et al. Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Med. Exp. 6, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Post, E. H. et al. The effects of acute renal denervation on kidney perfusion and metabolism in experimental septic shock. BMC Nephrol. 18, 182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kubiak, B. D. et al. A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J. Surg. Res. 166, e59–e69 (2011).

    Article  PubMed  Google Scholar 

  241. Maybauer, M. O. et al. Recombinant human activated protein C attenuates cardiovascular and microcirculatory dysfunction in acute lung injury and septic shock. Crit. Care 14, R217 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Lange, M. et al. Effects of early neuronal and delayed inducible nitric oxide synthase blockade on cardiovascular, renal, and hepatic function in ovine sepsis. Anesthesiology 113, 1376–1384 (2010).

    Article  CAS  PubMed  Google Scholar 

  243. Fenhammar, J. et al. Endothelin receptor A antagonism attenuates renal medullary blood flow impairment in endotoxemic pigs. PLoS One 6, e21534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fenhammar, J. et al. Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiology 114, 1130–1137 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Mazzola, S. et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J. 19, 2045–2047 (2005).

    Article  CAS  PubMed  Google Scholar 

  246. Netti, G. S. et al. LPS removal reduces CD80-mediated albuminuria in critically ill patients with Gram-negative sepsis. Am. J. Physiol. Renal Physiol. 316, F723–F731 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. Sander, V. et al. Protocol for large-scale production of kidney organoids from human pluripotent stem cells. Star. Protoc. 1, 100150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Hukriede, N., Vogt, A. & de Caestecker, M. Drug discovery to halt the progression of acute kidney injury to chronic kidney disease: a case for phenotypic drug discovery in acute kidney injury. Nephron 137, 268–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Martignoni, M., Groothuis, G. M. & de Kanter, R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert. Opin. Drug Metab. Toxicol. 2, 875–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. de Caestecker, M. et al. Bridging translation by improving preclinical study design in AKI. J. Am. Soc. Nephrol. 26, 2905–2916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Weisbord, S. D. & Palevsky, P. M. Design of clinical trials in acute kidney injury: lessons from the past and future directions. Semin. Nephrol. 36, 42–52 (2016).

    Article  PubMed  Google Scholar 

  252. Faubel, S. et al. Ongoing clinical trials in AKI. Clin. J. Am. Soc. Nephrol. 7, 861–873 (2012).

    Article  PubMed  Google Scholar 

  253. de Caestecker, M. P., Siew, E. D., Harris, R. C. & Hukriede, N. A. Introduction: The 2019 Federation of American societies for experimental biology acute kidney injury from bench to bedside conference. Semin. Nephrol. 40, 99–100 (2020).

    Article  PubMed  Google Scholar 

  254. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kumar, S. V. et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 146, dev172361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article. M.P.D.C., N.A.H., D.E.S., V.S., T.P., P.S.T.Y., L.J.S., M.P.H., A.J.D., D.M.B. and S.F. wrote the text. M.P.D.C., D.M.B. and S.F. made substantial contributions to discussions of the content. M.P.D.C., N.A.H., D.E.S., V.S., M.C.S., P.S.T.Y., L.J.S., M.P.H., A.J.D., D.M.B. and S.F. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Mark P. de Caestecker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hukriede, N.A., Soranno, D.E., Sander, V. et al. Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 18, 277–293 (2022). https://doi.org/10.1038/s41581-022-00539-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00539-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing