Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in antibody engineering for rheumatic diseases

Abstract

The advent of biologic therapies, particularly antibody therapeutics, has revolutionized the pharmacological treatment of many rheumatic diseases. Antibody discovery began with the immunization of mice for the production of rodent immunoglobulins, but advances in protein and genetic engineering have now made it possible to generate fully human antibodies, which are better tolerated by patients. For most clinical applications in rheumatology, antibodies have been used as blocking agents capable of neutralizing the function of pro-inflammatory proteins, such as TNF. The latest strategies involve antibody products armed with effector moieties, such as anti-inflammatory drugs or cytokines, or antibody products that are specific for multiple targets for the selective inhibition of inflammation at sites of disease. Antibodies are some of the best-selling drugs in the world, and with further advances in antibody development, engineering of armed antibodies and bispecific products will have an important role in the treatment of rheumatic diseases.

Key points

  • The advancement of technologies for antibody production and engineering culminated in the production of fully human antibodies as well as antibody derivatives.

  • Most antibody therapeutics approved for the treatment of rheumatic diseases function as sophisticated blocking and neutralizing agents.

  • Armed immunocytokines and antibody–drug conjugates combine targeting specificity and effector functions of antibodies with the immunological effect of their payloads.

  • Bispecific antibodies might treat rheumatic diseases by taking advantage of a variety of diverse antibody functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antibody effector functions.
Fig. 2: Antibody structures.
Fig. 3: Timeline of antibody developments.
Fig. 4: Development from fully mouse to fully human antibodies.
Fig. 5: Production of fully human antibodies.
Fig. 6: Next-generation antibody formats.

Similar content being viewed by others

References

  1. Smolen, J. S. Combating the burden of musculoskeletal conditions. Ann. Rheum. Dis. 63, 329 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Chronic rheumatic conditions. WHO http://www.who.int/chp/topics/rheumatic/en/ (2018).

  3. Klippel, J. H. Primer on the Rheumatic Diseases 13th edn (eds Klippel, J. H., Stone, J. H., Crofford, L. J. & White, P. H.) (Springer, 2008).

  4. Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    PubMed  Google Scholar 

  5. Sieper, J. & Poddubnyy, D. Axial spondyloarthritis. Lancet 390, 73–84 (2017).

    PubMed  Google Scholar 

  6. National Rheumatoid Arthritis Society. The Economic Burden of Rheumatoid Arthritis (NRAS, 2010).

  7. Gaskin, D. J. & Richard, P. The economic costs of pain in the United States. J. Pain 13, 715–724 (2012).

    PubMed  Google Scholar 

  8. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum. Dis. 76, 960–977 (2017).

    PubMed  Google Scholar 

  9. Rubbert-Roth, A. & Finckh, A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res. Ther. 11(Suppl. 1), S1 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology 8th edn (Garland Science, 2012).

  11. Xenaki, K. T., Oliveira, S. & van Bergen En Henegouwen, P. M. P. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front. Immunol. 8, 1287 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Probst, P. & Dario, N. Immunocytokines for cancer therapy. Forum Immunopathol. Dis. Therap. 5, 83–99 (2014).

    Google Scholar 

  13. Bannas, P., Hambach, J. & Koch-Nolte, F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol. 8, 1603 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Hassanzadeh-Ghassabeh, G., Devoogdt, N., De Pauw, P., Vincke, C. & Muyldermans, S. Nanobodies and their potential applications. Nanomedicine 8, 1013–1026 (2013).

    CAS  Google Scholar 

  15. Ward, E. S., Devanaboyina, S. C. & Ober, R. J. Targeting FcRn for the modulation of antibody dynamics. Mol. Immunol. 67, 131–141 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, A. M. et al. Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology 2, 21–36 (1996).

    CAS  PubMed  Google Scholar 

  17. van Witteloostuijn, S. B., Pedersen, S. L. & Jensen, K. J. Half-life extension of biopharmaceuticals using chemical methods: alternatives to PEGylation. ChemMedChem 11, 2474–2495 (2016).

    PubMed  Google Scholar 

  18. Union Chimique Belge. CIMZIA® (certolizumab pegol) https://www.cimzia.com (2019).

  19. Sleep, D., Cameron, J. & Evans, L. R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta 1830, 5526–5534 (2013).

    CAS  PubMed  Google Scholar 

  20. Binz, H. K., Amstutz, P. & Pluckthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268 (2005).

    CAS  PubMed  Google Scholar 

  21. Stahl, S. et al. Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 35, 691–712 (2017).

    PubMed  Google Scholar 

  22. Nygren, P. A. & Skerra, A. Binding proteins from alternative scaffolds. J. Immunol. Methods 290, 3–28 (2004).

    CAS  PubMed  Google Scholar 

  23. Gebauer, M. & Skerra, A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13, 245–255 (2009).

    CAS  PubMed  Google Scholar 

  24. Lofblom, J., Frejd, F. Y. & Stahl, S. Non-immunoglobulin based protein scaffolds. Curr. Opin. Biotechnol. 22, 843–848 (2011).

    PubMed  Google Scholar 

  25. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS  PubMed  Google Scholar 

  26. Rodgers, K. R. & Chou, R. C. Therapeutic monoclonal antibodies and derivatives: historical perspectives and future directions. Biotechnol. Adv. 34, 1149–1158 (2016).

    CAS  PubMed  Google Scholar 

  27. Smith, S. L. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J. Transpl. Coord. 6, 109–119; quiz 120–121 (1996).

    CAS  PubMed  Google Scholar 

  28. Morrison, S. L., Johnson, M. J., Herzenberg, L. A. & Oi, V. T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl Acad. Sci. USA 81, 6851–6855 (1984).

    CAS  PubMed  Google Scholar 

  29. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    CAS  PubMed  Google Scholar 

  30. Kaplon, H. & Reichert, J. M. Antibodies to watch in 2018. MAbs 10, 183–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. U.S. Food and Drug Administration. Drugs@FDA: FDA approved drug products. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (2019).

  32. Brekke, O. H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2, 52–62 (2003).

    CAS  PubMed  Google Scholar 

  33. Scott, C. T. Mice with a human touch. Nat. Biotechnol. 25, 1075–1077 (2007).

    CAS  PubMed  Google Scholar 

  34. Jakobovits, A., Amado, R. G., Yang, X., Roskos, L. & Schwab, G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat. Biotechnol. 25, 1134–1143 (2007).

    CAS  PubMed  Google Scholar 

  35. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    CAS  PubMed  Google Scholar 

  36. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    CAS  PubMed  Google Scholar 

  37. Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    CAS  PubMed  Google Scholar 

  38. Nobel Media AB. Press release: The Nobel Prize in Chemistry 2018. nobelprize.org https://www.nobelprize.org/prizes/chemistry/2018/press-release/ (2018).

  39. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 9, 325–338 (2010).

    CAS  PubMed  Google Scholar 

  40. Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398 (2004).

    CAS  PubMed  Google Scholar 

  41. Hacker, D. L. et al. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr. Purif. 92, 67–76 (2013).

    CAS  PubMed  Google Scholar 

  42. Hober, S., Nord, K. & Linhult, M. Protein A chromatography for antibody purification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 848, 40–47 (2007).

    CAS  PubMed  Google Scholar 

  43. Structural Genomics Consortium et al. Protein production and purification. Nat. Methods 5, 135–146 (2008).

    PubMed Central  Google Scholar 

  44. Bandaranayake, A. D. & Almo, S. C. Recent advances in mammalian protein production. FEBS Lett. 588, 253–260 (2014).

    CAS  PubMed  Google Scholar 

  45. Dumont, J., Euwart, D., Mei, B., Estes, S. & Kshirsagar, R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit. Rev. Biotechnol. 36, 1110–1122 (2016).

    CAS  PubMed  Google Scholar 

  46. Lehar, S. M. et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    CAS  PubMed  Google Scholar 

  47. Rosse, G. Antibody-drug conjugates for the treatment of inflammation. ACS Med. Chem. Lett. 8, 992–994 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brandish, P. E. et al. Development of anti-CD74 antibody-drug conjugates to target glucocorticoids to immune cells. Bioconjug. Chem. 29, 2357–2369 (2018).

    CAS  PubMed  Google Scholar 

  49. Dal Corso, A., Gebleux, R., Murer, P., Soltermann, A. & Neri, D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J. Control. Release 264, 211–218 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Staudacher, A. H. & Brown, M. P. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br. J. Cancer 117, 1736–1742 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, S. et al. Targeted delivery of an anti-inflammatory PDE4 inhibitor to immune cells via an antibody-drug conjugate. Mol. Ther. 24, 2078–2089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, R. E. et al. An immunosuppressive antibody-drug conjugate. J. Am. Chem. Soc. 137, 3229–3232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Penichet, M. L. & Morrison, S. L. Antibody-cytokine fusion proteins for the therapy of cancer. J. Immunol. Methods 248, 91–101 (2001).

    CAS  PubMed  Google Scholar 

  54. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    CAS  PubMed  Google Scholar 

  55. Letourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl Acad. Sci. USA 107, 2171–2176 (2010).

    CAS  PubMed  Google Scholar 

  56. Yokoyama, Y. et al. IL-2-anti-IL-2 monoclonal antibody immune complexes inhibit collagen-induced arthritis by augmenting regulatory T cell functions. J. Immunol. 201, 1899–1906 (2018).

    CAS  PubMed  Google Scholar 

  57. Woytschak, J. et al. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity 45, 172–184 (2016).

    CAS  PubMed  Google Scholar 

  58. Yang, S., Wang, J., Brand, D. D. & Zheng, S. G. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front. Immunol. 9, 784 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Williams, R. O. & Tseng, W. Y. Therapy: arming the regulators - new strategies to treat autoimmunity. Nat. Rev. Rheumatol. 14, 188–189 (2018).

    PubMed  Google Scholar 

  60. Fischer, R. et al. Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis. Arthritis Rheumatol. 70, 722–735 (2018).

    CAS  PubMed  Google Scholar 

  61. Reisfeld, R. A. & Gillies, S. D. Antibody-interleukin 2 fusion proteins: a new approach to cancer therapy. J. Clin. Lab. Anal. 10, 160–166 (1996).

    CAS  PubMed  Google Scholar 

  62. Reisfeld, R. A. & Gillies, S. D. Recombinant antibody fusion proteins for cancer immunotherapy. Curr. Top. Microbiol. Immunol. 213, 27–53 (1996).

    CAS  PubMed  Google Scholar 

  63. Bootz, F. & Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today 21, 180–189 (2016).

    CAS  PubMed  Google Scholar 

  64. Hutmacher, C. & Neri, D. Antibody-cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2018.09.002 (2018).

    Article  PubMed  Google Scholar 

  65. Neri, D. & Bicknell, R. Tumour vascular targeting. Nat. Rev. Cancer 5, 436–446 (2005).

    CAS  PubMed  Google Scholar 

  66. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Rybak, J. N., Roesli, C., Kaspar, M., Villa, A. & Neri, D. The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res. 67, 10948–10957 (2007).

    CAS  PubMed  Google Scholar 

  68. Schwager, K. et al. The antibody-mediated targeted delivery of interleukin-10 inhibits endometriosis in a syngeneic mouse model. Hum. Reprod. 26, 2344–2352 (2011).

    CAS  PubMed  Google Scholar 

  69. Trachsel, E. et al. Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res. Ther. 9, R9 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Hemmerle, T., Doll, F. & Neri, D. Antibody-based delivery of IL4 to the neovasculature cures mice with arthritis. Proc. Natl Acad. Sci. USA 111, 12008–12012 (2014).

    CAS  PubMed  Google Scholar 

  71. Hemmerle, T. et al. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation. J. Dermatol. Sci. 76, 96–103 (2014).

    CAS  PubMed  Google Scholar 

  72. Quattrone, F. et al. The targeted delivery of interleukin 4 inhibits development of endometriotic lesions in a mouse model. Reprod. Sci. 22, 1143–1152 (2015).

    CAS  PubMed  Google Scholar 

  73. Bootz, F., Schmid, A. S. & Neri, D. Alternatively spliced EDA domain of fibronectin is a target for pharmacodelivery applications in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1908–1917 (2015).

    PubMed  Google Scholar 

  74. Galeazzi, M. et al. Dekavil (F8IL10) – update on the results of clinical trials investigating the immunocytokine in patients with rheumatoid arthritis [abstract FRI0118]. Ann. Rheum. Dis. 77 (Suppl. 2), 603–604 (2018).

    Google Scholar 

  75. US National Library Of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02270632 (2016).

  76. De Luca, R. et al. Potency-matched dual cytokine-antibody fusion proteins for cancer therapy. Mol. Cancer Ther. 16, 2442–2451 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. MAbs 9, 182–212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    CAS  PubMed  Google Scholar 

  79. Krishnamurthy, A. & Jimeno, A. Bispecific antibodies for cancer therapy: a review. Pharmacol. Ther. 185, 122–134 (2018).

    CAS  PubMed  Google Scholar 

  80. Carter, P. Bispecific human IgG by design. J. Immunol. Methods 248, 7–15 (2001).

    CAS  PubMed  Google Scholar 

  81. Merchant, A. M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    CAS  PubMed  Google Scholar 

  82. Sedykh, S. E., Prinz, V. V., Buneva, V. N. & Nevinsky, G. A. Bispecific antibodies: design, therapy, perspectives. Drug Des. Devel Ther. 12, 195–208 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Kiefer, J. D. & Neri, D. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol. Rev. 270, 178–192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Silacci, M. et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17 A inhibitor for the treatment of inflammatory diseases. MAbs 8, 141–149 (2016).

    CAS  PubMed  Google Scholar 

  85. Veri, M. C. et al. Therapeutic control of B cell activation via recruitment of Fcgamma receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 62, 1933–1943 (2010).

    CAS  PubMed  Google Scholar 

  86. Holmes, D. Buy buy bispecific antibodies. Nat. Rev. Drug Discov. 10, 798–800 (2011).

    CAS  PubMed  Google Scholar 

  87. Mullard, A. Bispecific antibody pipeline moves beyond oncology. Nat. Rev. Drug Discov. 16, 666–668 (2017).

    CAS  PubMed  Google Scholar 

  88. Carson, W. E. et al. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells. J. Immunol. 162, 4943–4951 (1999).

    CAS  PubMed  Google Scholar 

  89. Opal, S. M. et al. Potential hazards of combination immunotherapy in the treatment of experimental septic shock. J. Infect. Dis. 173, 1415–1421 (1996).

    CAS  PubMed  Google Scholar 

  90. Kontermann, R. E. Dual targeting strategies with bispecific antibodies. MAbs 4, 182–197 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Genentech. Hemophilia A Treatment | HEMLIBRA™ (emicizumab-kxwh) https://www.hemlibra.com (2019).

  92. Koristka, S. et al. Retargeting of human regulatory T cells by single-chain bispecific antibodies. J. Immunol. 188, 1551–1558 (2012).

    CAS  PubMed  Google Scholar 

  93. Koristka, S. et al. Tregs activated by bispecific antibodies: killers or suppressors? Oncoimmunology 4, e994441 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Urquhart, L. Market watch: top drugs and companies by sales in 2017. Nat. Rev. Drug Discov. 17, 232 (2018).

    CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Rheumatology thanks R. Williams and R. Kontermann, for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dario Neri.

Ethics declarations

Competing interests

D.N. declares that he is co-founder and shareholder of Philogen, a company that develops (inter alia) antibody–cytokine fusion proteins for the treatment of cancer and of chronic inflammation. A.S.S. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody-dependent cell-mediated cytotoxicity

(ADCC). The crystallizable fragment (Fc)-receptor-mediated killing of antibody-coated target cells through immune recognition of the antibody Fc by effector cells such as natural killer cells.

Complement-dependent cytotoxicity

(CDC). The complement component C1q can bind to the crystallizable fragment (Fc) of IgM and IgG bound to cell surface antigens and initiate the classical complement-activation pathway leading to destruction of the target cell.

Phage display

The genetic information of peptides or proteins can be genetically fused to bacteriophage coat protein genes and they are thus individually displayed on phages, thereby linking genotype and phenotype so that the displayed proteins can be screened against defined targets.

Affinity maturation

The production of antibodies with increasing affinity for a target antigen during the course of an adaptive immune response; this process can also be mimicked in vitro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, A.S., Neri, D. Advances in antibody engineering for rheumatic diseases. Nat Rev Rheumatol 15, 197–207 (2019). https://doi.org/10.1038/s41584-019-0188-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0188-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing