Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immune response to infection in the bladder

Abstract

The bladder is continuously protected by passive defences such as a mucus layer, antimicrobial peptides and secretory immunoglobulins; however, these defences are occasionally overcome by invading bacteria that can induce a strong host inflammatory response in the bladder. The urothelium and resident immune cells produce additional defence molecules, cytokines and chemokines, which recruit inflammatory cells to the infected tissue. Resident and recruited immune cells act together to eradicate bacteria from the bladder and to develop lasting immune memory against infection. However, urinary tract infection (UTI) is commonly recurrent, suggesting that the induction of a memory response in the bladder is inadequate to prevent reinfection. Additionally, infection seems to induce long-lasting changes in the urothelium, which can render the tissue more susceptible to future infection. The innate immune response is well-studied in the field of UTI, but considerably less is known about how adaptive immunity develops and how repair mechanisms restore bladder homeostasis following infection. Furthermore, data demonstrate that sex-based differences in immunity affect resolution and infection can lead to tissue remodelling in the bladder following resolution of UTI. To combat the rise in antimicrobial resistance, innovative therapeutic approaches to bladder infection are currently in development. Improving our understanding of how the bladder responds to infection will support the development of improved treatments for UTI, particularly for those at risk of recurrent infection.

Key points

  • The bladder contains constitutive passive defences, such as mucus and immunoglobulins, to protect it against colonization.

  • Robust cytokine expression and inflammatory cell infiltration into the bladder during urinary tract infection are dependent on bacterial species and sex.

  • Uropathogenic Escherichia coli induces a non-sterilizing adaptive immune response in the bladder.

  • Uropathogenic Escherichia coli causes long-lasting changes in the bladder urothelium, conferring resistance or increased susceptibility to subsequent infections depending on the outcomes of the first infection.

  • Vaccines and other non-antibiotic-based therapies in development might provide therapeutic relief to those suffering from recurrent or chronic urinary tract infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Designating bacterial prostatitis as a UTI.
Fig. 2: Structure of the glycosaminoglycan layer of the bladder wall.
Fig. 3: Constitutive and induced immune responses in the bladder.

Similar content being viewed by others

References

  1. Ozturk, R. & Murt, A. Epidemiology of urological infections: a global burden. World J. Urol. https://doi.org/10.1007/s00345-019-03071-4 (2020).

    Article  PubMed  Google Scholar 

  2. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Odegaard, J. I. & Hsieh, M. H. Immune responses to Schistosoma haematobium infection. Parasite Immunol. 36, 428–438 (2014).

    CAS  PubMed  Google Scholar 

  4. Sobel, J. D., Fisher, J. F., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections — epidemiology. Clin. Infect. Dis. 52, S433–S436 (2011).

    PubMed  Google Scholar 

  5. Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7, 653–660 (2010).

    PubMed  Google Scholar 

  6. Wagenlehner, F. et al. The global prevalence of infections in urology study: a long-term, worldwide surveillance study on urological infections. Pathogens 5, 10 (2016).

    PubMed Central  Google Scholar 

  7. Bryce, A. et al. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ 352, i939 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Johnson, J. R., Johnston, B., Clabots, C., Kuskowski, M. A. & Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Infect. Dis. 51, 286–294 (2010).

    PubMed  Google Scholar 

  9. Rijavec, M. et al. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr. Microbiol. 53, 158–162 (2006).

    CAS  PubMed  Google Scholar 

  10. Hickling, D. R., Sun, T. T. & Wu, X. R. Anatomy and physiology of the urinary tract: relation to host defense and microbial infection. Microbiol. Spectr. 3, 10 (2015).

    Google Scholar 

  11. Katouli, M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran. J. Microbiol. 2, 59–72 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Hooton, T. M. Recurrent urinary tract infection in women. Int. J. Antimicrob. Agents 17, 259–268 (2001).

    CAS  PubMed  Google Scholar 

  13. Russo, T. A., Stapleton, A., Wenderoth, S., Hooton, T. M. & Stamm, W. E. Chromosomal restriction fragment length polymorphism analysis of Escherichia coli strains causing recurrent urinary tract infections in young women. J. Infect. Dis. 172, 440–445 (1995).

    CAS  PubMed  Google Scholar 

  14. Wold, A. E., Caugant, D. A., Lidin-Janson, G., de Man, P. & Svanborg, C. Resident colonic Escherichia coli strains frequently display uropathogenic characteristics. J. Infect. Dis. 165, 46–52 (1992).

    CAS  PubMed  Google Scholar 

  15. Chen, S. L. et al. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci. Transl Med. 5, 184ra160 (2013).

    Google Scholar 

  16. Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).

    CAS  PubMed  Google Scholar 

  17. Geerlings, S. E. Clinical presentations and epidemiology of urinary tract infections. Microbiol. Spectr. 4, 1–11 (2016).

    Google Scholar 

  18. Foxman, B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North. Am. 28, 1–13 (2014).

    PubMed  Google Scholar 

  19. Scholes, D. et al. Family history and risk of recurrent cystitis and pyelonephritis in women. J. Urol. 184, 564–569 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Tabel, Y., Berdeli, A. & Mir, S. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int. J. Immunogenet. 34, 399–405 (2007).

    CAS  PubMed  Google Scholar 

  21. Karoly, E. et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr. Res. 61, 371–374 (2007).

    CAS  PubMed  Google Scholar 

  22. Lundstedt, A. C. et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2, e825 (2007).

    PubMed  PubMed Central  Google Scholar 

  23. Ragnarsdottir, B. et al. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One 5, e10734 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Ramakrishnan, K. & Scheid, D. C. Diagnosis and management of acute pyelonephritis in adults. Am. Fam. Physician 71, 933–942 (2005).

    PubMed  Google Scholar 

  25. Wagenlehner, F. M., Pilatz, A., Naber, K. G. & Weidner, W. Therapeutic challenges of urosepsis. Eur. J. Clin. Invest. 38, 45–49 (2008).

    PubMed  Google Scholar 

  26. Armbruster, C. E. & Mobley, H. L. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nielubowicz, G. R. & Mobley, H. L. Host–pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7, 430–441 (2010).

    CAS  PubMed  Google Scholar 

  28. Delzell, J. E. Jr & Lefevre, M. L. Urinary tract infections during pregnancy. Am. Fam. Physician 61, 713–721 (2000).

    PubMed  Google Scholar 

  29. Stenqvist, K. et al. Bacteriuria in pregnancy. Frequency and risk of acquisition. Am. J. Epidemiol. 129, 372–379 (1989).

    CAS  PubMed  Google Scholar 

  30. Goswami, R. et al. Prevalence of urinary tract infection and renal scars in patients with diabetes mellitus. Diabetes Res. Clin. Pract. 53, 181–186 (2001).

    CAS  PubMed  Google Scholar 

  31. Jacobsen, S. M., Stickler, D. J., Mobley, H. L. & Shirtliff, M. E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rousseau, M. et al. Bladder catheterization increases susceptibility to infection that can be prevented by prophylactic antibiotic treatment. JCI Insight 1, e88178 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl Med. 6, 254ra127 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Al-Hazmi, H. Role of duration of catheterization and length of hospital stay on the rate of catheter-related hospital-acquired urinary tract infections. Res. Rep. Urol. 7, 41–47 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 625–663 (2010).

    PubMed  Google Scholar 

  36. Maharjan, G., Khadka, P., Siddhi Shilpakar, G., Chapagain, G. & Dhungana, G. R. Catheter-associated urinary tract infection and obstinate biofilm producers. Can. J. Infect. Dis. Med. Microbiol. 2018, 7624857 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schelling, K. et al. Reducing catheter-associated urinary tract infections in a neuro-spine intensive care unit. Am. J. Infect. Control. 43, 892–894 (2015).

    PubMed  Google Scholar 

  39. Lipsky, B. A. Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. Ann. Intern. Med. 110, 138–150 (1989).

    CAS  PubMed  Google Scholar 

  40. Harper, M. & Fowlis, G. 3. Management of urinary tract infections in men. Trends Urol. Gynaecol. Sex. Health 12, 30–35 (2007).

    Google Scholar 

  41. Price, T. K. et al. The clinical urine culture: enhanced techniques improve detection of clinically relevant microorganisms. J. Clin. Microbiol. 54, 1216–1222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brecher, S. M. Complicated urinary tract infections: what’s a Lab To Do? J. Clin. Microbiol. 54, 1189–1190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Franz, M. & Horl, W. H. Common errors in diagnosis and management of urinary tract infection. I. Pathophysiology and diagnostic techniques. Nephrol. Dial. Transpl. 14, 2746–2753 (1999).

    CAS  Google Scholar 

  44. Bartoletti, R. et al. European Association of Urology guidelines - urological infections. EAU https://uroweb.org/guideline/urological-infections/ (2016).

  45. Tandan, M., Duane, S., Cormican, M., Murphy, A. W. & Vellinga, A. Reconsultation and antimicrobial treatment of urinary tract infection in male and female patients in general practice. Antibiotics 5, 31 (2016).

    PubMed Central  Google Scholar 

  46. Drekonja, D. M., Rector, T. S., Cutting, A. & Johnson, J. R. Urinary tract infection in male veterans: treatment patterns and outcomes. JAMA Intern. Med. 173, 62–68 (2013).

    PubMed  Google Scholar 

  47. Trautner, B. W. New perspectives on urinary tract infection in men. JAMA Intern. Med. 173, 68–70 (2013).

    PubMed  Google Scholar 

  48. Germanos, G. J. et al. No clinical benefit to treating male urinary tract infection longer than seven days: an outpatient database study. Open Forum Infect. Dis. 6, ofz216 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Ruben, F. L. et al. Clinical infections in the noninstitutionalized geriatric age group: methods utilized and incidence of infections. The Pittsburgh Good Health Study. Am. J. Epidemiol. 141, 145–157 (1995).

    CAS  PubMed  Google Scholar 

  50. Krieger, J. N. et al. Epidemiology of prostatitis. Int. J. Antimicrob. Agents 31, S85–S90 (2008).

    CAS  PubMed  Google Scholar 

  51. Schaeffer, A. J. Epidemiology and demographics of prostatitis. Andrologia 35, 252–257 (2003).

    CAS  PubMed  Google Scholar 

  52. Wagenlehner, F. M., Weidner, W., Pilatz, A. & Naber, K. G. Urinary tract infections and bacterial prostatitis in men. Curr. Opin. Infect. Dis. 27, 97–101 (2014).

    PubMed  Google Scholar 

  53. Meares, E. M. Jr. & Stamey, T. A. The diagnosis and management of bacterial prostatitis. Br. J. Urol. 44, 175–179 (1972).

    PubMed  Google Scholar 

  54. Lupo, F. & Ingersoll, M. A. Is bacterial prostatitis a urinary tract infection? Nat. Rev. Urol. 16, 203–204 (2019).

    PubMed  Google Scholar 

  55. Trautner, B. W. Asymptomatic bacteriuria: when the treatment is worse than the disease. Nat. Rev. Urol. 9, 85–93 (2012).

    CAS  Google Scholar 

  56. Cai, T. et al. The role of asymptomatic bacteriuria in young women with recurrent urinary tract infections: to treat or not to treat? Clin. Infect. Dis. 55, 771–777 (2012).

    PubMed  Google Scholar 

  57. Werner, N. L., Hecker, M. T., Sethi, A. K. & Donskey, C. J. Unnecessary use of fluoroquinolone antibiotics in hospitalized patients. BMC Infect. Dis. 11, 187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mora-Bau, G. et al. Macrophages subvert adaptive immunity to urinary tract infection. PLoS Pathog. 11, e1005044 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Hu, P. et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am. J. Physiol. Renal Physiol 283, F1200–F1207 (2002).

    CAS  PubMed  Google Scholar 

  60. Liang, F. X. et al. Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem. J. 355, 13–18 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Negrete, H. O., Lavelle, J. P., Berg, J., Lewis, S. A. & Zeidel, M. L. Permeability properties of the intact mammalian bladder epithelium. Am. J. Physiol. 271, F886–F894 (1996).

    CAS  PubMed  Google Scholar 

  62. Hurst, R. E. Structure, function, and pathology of proteoglycans and glycosaminoglycans in the urinary tract. World J. Urol. 12, 3–10 (1994).

    CAS  PubMed  Google Scholar 

  63. Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).

    PubMed  Google Scholar 

  64. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630–9635 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).

    CAS  PubMed  Google Scholar 

  66. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    CAS  PubMed  Google Scholar 

  67. Cornish, J., Lecamwasam, J. P., Harrison, G., Vanderwee, M. A. & Miller, T. E. Host defence mechanisms in the bladder. II. Disruption of the layer of mucus. Br. J. Exp. Pathol. 69, 759–770 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Parsons, C. L. The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 69, 9–16 (2007).

    PubMed  Google Scholar 

  69. Parsons, C. L., Mulholland, S. G. & Anwar, H. Antibacterial activity of bladder surface mucin duplicated by exogenous glycosaminoglycan (heparin). Infect. Immun. 24, 552–557 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Parsons, C. L., Pollen, J. J., Anwar, H., Stauffer, C. & Schmidt, J. D. Antibacterial activity of bladder surface mucin duplicated in the rabbit bladder by exogenous glycosaminoglycan (sodium pentosanpolysulfate). Infect. Immun. 27, 876–881 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ruggieri, M. R., Hanno, P. M. & Levin, R. M. The effects of heparin on the adherence of five species of urinary tract pathogens to urinary bladder mucosa. Urol. Res. 12, 199–203 (1984).

    CAS  PubMed  Google Scholar 

  72. Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis. 42, 658–676 (2003).

    CAS  PubMed  Google Scholar 

  73. Bates, J. M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004).

    CAS  PubMed  Google Scholar 

  74. Raffi, H. S., Bates, J. M. Jr., Laszik, Z. & Kumar, S. Tamm-horsfall protein protects against urinary tract infection by proteus mirabilis. J. Urol. 181, 2332–2338 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Lanne, B. et al. Glycoconjugate receptors for P-fimbriated Escherichia coli in the mouse. An animal model of urinary tract infection. J. Biol. Chem. 270, 9017–9025 (1995).

    CAS  PubMed  Google Scholar 

  76. James-Ellison, M. Y., Roberts, R., Verrier-Jones, K., Williams, J. D. & Topley, N. Mucosal immunity in the urinary tract: changes in sIgA, FSC and total IgA with age and in urinary tract infection. Clin. Nephrol. 48, 69–78 (1997).

    CAS  PubMed  Google Scholar 

  77. Mestecky, J. & McGhee, J. R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv. Immunol. 40, 153–245 (1987).

    CAS  PubMed  Google Scholar 

  78. Corthesy, B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun. Rev. 12, 661–665 (2013).

    CAS  PubMed  Google Scholar 

  79. Mathias, A., Pais, B., Favre, L., Benyacoub, J. & Corthesy, B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 5, 688–695 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Mantis, N. J., Rol, N. & Corthesy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pastorello, I. et al. EsiB, a novel pathogenic Escherichia coli secretory immunoglobulin A-binding protein impairing neutrophil activation. MBio 4, e00206–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Zychlinsky Scharff, A. et al. Sex differences in IL-17 contribute to chronicity in male versus female urinary tract infection. JCI Insight 5, e122998 (2019).

    Google Scholar 

  83. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    CAS  PubMed  Google Scholar 

  84. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    CAS  PubMed  Google Scholar 

  85. Gagliani, N. & Huber, S. Basic aspects of T helper cell differentiation. Methods Mol. Biol. 1514, 19–30 (2017).

    CAS  PubMed  Google Scholar 

  86. Chevalier, M. F. et al. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Invest. 127, 2916–2929 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Gardiner, R. A. et al. Immunohistochemical analysis of the human bladder. Br. J. Urol. 58, 19–25 (1986).

    CAS  PubMed  Google Scholar 

  88. el-Demiry, M. I., Hargreave, T. B., Busuttil, A., James, K. & Chisholm, G. D. Immunohistochemical identification of lymphocyte subsets and macrophages in normal human urothelium using monoclonal antibodies. Br. J. Urol. 58, 436–442 (1986).

    CAS  PubMed  Google Scholar 

  89. Hart, D. N. & Fabre, J. W. Major histocompatibility complex antigens in rat kidney, ureter, and bladder. Localization with monoclonal antibodies and demonstration of Ia-positive dendritic cells. Transplantation 31, 318–325 (1981).

    CAS  PubMed  Google Scholar 

  90. Hjelm, E., Forsum, U. & Klareskog, L. Anti-Ia-reactive cells in the urinary tract of man, guinea-pig, rat and mouse. Scand. J. Immunol. 16, 531–538 (1982).

    CAS  PubMed  Google Scholar 

  91. Hung, C. S., Dodson, K. W. & Hultgren, S. J. A murine model of urinary tract infection. Nat. Protoc. 4, 1230–1243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zychlinsky Scharff, A., Albert, M. L. & Ingersoll, M. A. Urinary tract infection in a small animal model: transurethral catheterization of male and female mice. J. Vis. Exp. https://doi.org/10.3791/54432 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Olson, P. D., Hruska, K. A. & Hunstad, D. A. Androgens enhance male urinary tract infection severity in a new model. J. Am. Soc. Nephrol. 27, 1625–1634 (2016).

    CAS  PubMed  Google Scholar 

  94. Ingersoll, M. A. Sex differences shape the response to infectious diseases. PLoS Pathog. 13, e1006688 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Rosen, D. A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    PubMed  PubMed Central  Google Scholar 

  98. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    CAS  PubMed  Google Scholar 

  99. Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    CAS  PubMed  Google Scholar 

  103. Apodaca, G. Stretch-regulated exocytosis of discoidal vesicles in urinary bladder epithelium. Urology 57, 103–104 (2001).

    CAS  PubMed  Google Scholar 

  104. Song, J. et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog. 3, e60 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. Song, J. et al. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl Acad. Sci. USA 106, 14966–14971 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Miao, Y., Li, G., Zhang, X., Xu, H. & Abraham, S. N. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161, 1306–1319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, C. et al. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc. Natl Acad. Sci. USA 109, 11008–11013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  111. Wang, C. et al. A non-canonical autophagy-dependent role of the ATG16L1(T300A) variant in urothelial vesicular trafficking and uropathogenic Escherichia coli persistence. Autophagy 15, 527–542 (2019).

    CAS  PubMed  Google Scholar 

  112. Martin-Sanchez, D. et al. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis. 9, 118 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Lauzier, A. et al. Colorectal cancer cells respond differentially to autophagy inhibition in vivo. Sci. Rep. 9, 11316 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Valore, E. V. et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zasloff, M. The antibacterial shield of the human urinary tract. Kidney Int. 83, 548–550 (2013).

    CAS  PubMed  Google Scholar 

  116. Jaillon, S. et al. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 40, 621–632 (2014).

    CAS  PubMed  Google Scholar 

  117. Becknell, B. et al. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int. 87, 151–161 (2015).

    CAS  PubMed  Google Scholar 

  118. Spencer, J. D. et al. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 83, 615–625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Spencer, J. D. et al. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract. Kidney Int. 85, 1179–1191 (2014).

    CAS  PubMed  Google Scholar 

  120. Boix, E. & Nogues, M. V. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol. Biosyst. 3, 317–335 (2007).

    CAS  PubMed  Google Scholar 

  121. Huang, Y. C. et al. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J. Biol. Chem. 282, 4626–4633 (2007).

    CAS  PubMed  Google Scholar 

  122. Spencer, J. D. et al. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 80, 174–180 (2011).

    CAS  PubMed  Google Scholar 

  123. Durr, U. H., Sudheendra, U. S. & Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 1758, 1408–1425 (2006).

    PubMed  Google Scholar 

  124. Gallo, R. L. et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272, 13088–13093 (1997).

    CAS  PubMed  Google Scholar 

  125. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    CAS  PubMed  Google Scholar 

  126. Nielsen, K. L. et al. Role of urinary cathelicidin LL-37 and human beta-defensin 1 in uncomplicated Escherichia coli urinary tract infections. Infect. Immun. 82, 1572–1578 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. Spencer, J. D., Schwaderer, A. L., Becknell, B., Watson, J. & Hains, D. S. The innate immune response during urinary tract infection and pyelonephritis. Pediatr. Nephrol. 29, 1139–1149 (2014).

    PubMed  Google Scholar 

  128. Ihi, T., Nakazato, M., Mukae, H. & Matsukura, S. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin. Infect. Dis. 25, 1134–1140 (1997).

    CAS  PubMed  Google Scholar 

  129. Spencer, J. D. et al. Human alpha defensin 5 expression in the human kidney and urinary tract. PLoS One 7, e31712 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Becknell, B. et al. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 8, e77714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhao, J., Wang, Z., Chen, X., Wang, J. & Li, J. Effects of intravesical liposome-mediated human beta-defensin-2 gene transfection in a mouse urinary tract infection model. Microbiol. Immunol. 55, 217–223 (2011).

    CAS  PubMed  Google Scholar 

  132. Gomes, A. C., Moreira, A. C., Mesquita, G. & Gomes, M. S. Modulation of iron metabolism in response to infection: twists for all tastes. Pharmaceuticals 11, 84 (2018).

    PubMed Central  Google Scholar 

  133. Robinson, A. E., Heffernan, J. R. & Henderson, J. P. The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol. 13, 745–756 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Garcia, E. C., Brumbaugh, A. R. & Mobley, H. L. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 79, 1225–1235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Henderson, J. P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Hagan, E. C. & Mobley, H. L. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol. 71, 79–91 (2009).

    CAS  PubMed  Google Scholar 

  137. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    CAS  PubMed  Google Scholar 

  138. Patras, K. A. et al. Augmentation of urinary lactoferrin enhances host innate immune clearance of uropathogenic Escherichia coli. J. Innate Immun. 11, 481–495 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Arao, S. et al. Measurement of urinary lactoferrin as a marker of urinary tract infection. J. Clin. Microbiol. 37, 553–557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Johnson, E. E. & Wessling-Resnick, M. Iron metabolism and the innate immune response to infection. Microbes Infect. 14, 207–216 (2012).

    CAS  PubMed  Google Scholar 

  141. Steigedal, M. et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J. Immunol. 193, 6081–6089 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bauckman, K. A. et al. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am. J. Physiol. Renal Physiol. 316, F814–F822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Houamel, D. et al. Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J. Am. Soc. Nephrol. 27, 835–846 (2016).

    CAS  PubMed  Google Scholar 

  145. Lu, Y. C., Yeh, W. C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 42, 145–151 (2008).

    CAS  PubMed  Google Scholar 

  146. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    CAS  PubMed  Google Scholar 

  147. Schilling, J. D. et al. CD14- and Toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect. Immun. 71, 1470–1480 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Schilling, J. D., Martin, S. M., Hung, C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 100, 4203–4208 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shahin, R. D., Engberg, I., Hagberg, L. & Svanborg Eden, C. Neutrophil recruitment and bacterial clearance correlated with LPS responsiveness in local gram-negative infection. J. Immunol. 138, 3475–3480 (1987).

    CAS  PubMed  Google Scholar 

  150. Ragnarsdottir, B. et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis. 196, 475–484 (2007).

    CAS  PubMed  Google Scholar 

  151. Eden, C. S., Shahin, R. & Briles, D. Host resistance to mucosal gram-negative infection. Susceptibility of lipopolysaccharide nonresponder mice. J. Immunol. 140, 3180–3185 (1988).

    CAS  PubMed  Google Scholar 

  152. Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Andersen-Nissen, E. et al. Cutting edge: Tlr5/ mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178, 4717–4720 (2007).

    CAS  PubMed  Google Scholar 

  154. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    CAS  PubMed  Google Scholar 

  155. Klumpp, D. J. et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun. 69, 6689–6695 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ingersoll, M. A., Kline, K. A., Nielsen, H. V. & Hultgren, S. J. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol. 10, 2568–2578 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Schiwon, M. et al. Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156, 456–468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    CAS  PubMed  Google Scholar 

  159. Isaacson, B. et al. Stromal cell-derived factor 1 mediates immune cell attraction upon urinary tract infection. Cell Rep. 20, 40–47 (2017).

    CAS  PubMed  Google Scholar 

  160. Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162, 3037–3044 (1999).

    CAS  PubMed  Google Scholar 

  161. Waldhuber, A. et al. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation. J. Clin. Invest. 126, 2425–2436 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Armbruster, C. E., Smith, S. N., Mody, L. & Mobley, H. L. T. Urine cytokine and chemokine levels predict urinary tract infection severity independent of uropathogen, urine bacterial burden, host genetics, and host age. Infect. Immun. (2018).

  163. Lin, A. E. et al. Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog. 11, e1004818 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Sundac, L. et al. Protein-based profiling of the immune response to uropathogenic Escherichia coli in adult patients immediately following hospital admission for acute cystitis. Pathog. Dis. 74, ftw062 (2016).

    PubMed  Google Scholar 

  165. Ambite, I. et al. Molecular basis of acute cystitis reveals susceptibility genes and immunotherapeutic targets. PLoS Pathog. 12, e1005848 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kline, K. A., Schwartz, D. J., Lewis, W. G., Hultgren, S. J. & Lewis, A. L. Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection. Infect. Immun. 79, 3588–3595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kline, K. A. et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect. Immun. 78, 1943–1951 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ulett, G. C. et al. Group B Streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1α. J. Infect. Dis. 201, 866–870 (2010).

    PubMed  Google Scholar 

  170. Megyeri, K., Mandi, Y., Degre, M. & Rosztoczy, I. Induction of cytokine production by different Staphylococcal strains. Cytokine 19, 206–212 (2002).

    CAS  PubMed  Google Scholar 

  171. Conway, L. J., Carter, E. J. & Larson, E. L. Risk factors for nosocomial bacteremia secondary to urinary catheter-associated bacteriuria: a systematic review. Urol. Nurs. 35, 191–203 (2015).

    PubMed  PubMed Central  Google Scholar 

  172. Fabbian, F. et al. Is female gender as harmful as bacteria? Analysis of hospital admissions for urinary tract infections in elderly patients. J. Womens Health 24, 587–592 (2015).

    Google Scholar 

  173. Oliveira, P. A. et al. Technical Report: technique of bladder catheterization in female mice and rats for intravesical instillation in models of bladder cancer. Scand. J. Lab. Anim. Sci. 36, 5–9 (2009).

    CAS  Google Scholar 

  174. Seager, C. M. et al. Intravesical delivery of rapamycin suppresses tumorigenesis in a mouse model of progressive bladder cancer. Cancer Prev. Res. 2, 1008–1014 (2009).

    CAS  Google Scholar 

  175. El Behi, M. et al. An essential role for decorin in bladder cancer invasiveness. EMBO Mol. Med. 5, 1835–1851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Hagberg, L. et al. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect. Immun. 40, 273–283 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Olson, P. D., Hruska, K. A. & Hunstad, D. A. Androgens enhance male urinary tract infection severity in a new model. J. Am. Soc. Nephrol. 27, 1625–1634 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Boehm, B. J., Colopy, S. A., Jerde, T. J., Loftus, C. J. & Bushman, W. Acute bacterial inflammation of the mouse prostate. Prostate 72, 307–317 (2012).

    CAS  PubMed  Google Scholar 

  179. Olson, P. D. et al. Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int. 94, 502–513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ahmadikia, K. et al. Increased urine interleukin-17 and interleukin-22 levels in patients with candidal urinary tract infection. Iran. J. Kidney Dis. 12, 33–39 (2018).

    PubMed  Google Scholar 

  181. Sivick, K. E., Schaller, M. A., Smith, S. N. & Mobley, H. L. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J. Immunol. 184, 2065–2075 (2010).

    CAS  PubMed  Google Scholar 

  182. Abraham, S. N. & Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 15, 655–663 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Haraoka, M. et al. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 180, 1220–1229 (1999).

    CAS  PubMed  Google Scholar 

  184. Horvath, D. J. Jr. et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 13, 426–437 (2011).

    CAS  PubMed  Google Scholar 

  185. Engel, D. et al. Tumor necrosis factor alpha- and inducible nitric oxide synthase-producing dendritic cells are rapidly recruited to the bladder in urinary tract infection but are dispensable for bacterial clearance. Infect. Immun. 74, 6100–6107 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Carey, A. J. et al. Uropathogenic escherichia coli engages CD14-dependent signaling to enable bladder-macrophage-dependent control of acute urinary tract infection. J. Infect. Dis. 213, 659–668 (2016).

    CAS  PubMed  Google Scholar 

  188. Symington, J. W. et al. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1beta-dependent manner. Mucosal Immunol. 8, 1388–1399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70 (2008).

    CAS  PubMed  Google Scholar 

  190. Marshall, J. C. The effects of granulocyte colony-stimulating factor in preclinical models of infection and acute inflammation. Shock 24, 120–129 (2005).

    CAS  PubMed  Google Scholar 

  191. Yu, L. et al. Mucosal infection rewires TNFa signaling dynamics to skew susceptibility to recurrence. Elife 8, e46677 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Kau, A. L. et al. Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice. Infect. Immun. 73, 2461–2468 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kline, K. A. & Lewis, A. L. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol. Spectr. 4, 10 (2016).

    Google Scholar 

  194. Lacerda Mariano, L. & Ingersoll, M. A. Bladder resident macrophages: mucosal sentinels. Cell Immunol. 330, 136–141 (2018).

    CAS  PubMed  Google Scholar 

  195. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Goren, I. et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am. J. Pathol. 175, 132–147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Summan, M. et al. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1488–R1495 (2006).

    CAS  PubMed  Google Scholar 

  199. van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H. & van Luyn, M. J. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170, 818–829 (2007).

    PubMed  PubMed Central  Google Scholar 

  200. Gur, C. et al. Natural killer cell-mediated host defense against uropathogenic E. coli is counteracted by bacterial hemolysinA-dependent killing of NK cells. Cell Host Microbe 14, 664–674 (2013).

    CAS  PubMed  Google Scholar 

  201. Cui, Y. et al. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 125, 4171–4185 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Siegfried, L., Kmetova, M., Puzova, H., Molokacova, M. & Filka, J. Virulence-associated factors in Escherichia coli strains isolated from children with urinary tract infections. J. Med. Microbiol. 41, 127–132 (1994).

    CAS  PubMed  Google Scholar 

  203. Nagamatsu, K. et al. Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc. Natl Acad. Sci. USA 112, E871–E880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Jones-Carson, J., Balish, E. & Uehling, D. T. Susceptibility of immunodeficient gene-knockout mice to urinary tract infection. J. Urol. 161, 338–341 (1999).

    CAS  PubMed  Google Scholar 

  205. Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17+ γδ T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    CAS  PubMed  Google Scholar 

  206. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    CAS  PubMed  Google Scholar 

  207. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med. 178, 1–16 (1993).

    CAS  PubMed  Google Scholar 

  209. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    PubMed  Google Scholar 

  210. Skjot-Rasmussen, L. et al. Persisting clones of Escherichia coli isolates from recurrent urinary tract infection in men and women. J. Med. Microbiol. 60, 550–554 (2011).

    PubMed  Google Scholar 

  211. Czaja, C. A. et al. Prospective cohort study of microbial and inflammatory events immediately preceding Escherichia coli recurrent urinary tract infection in women. J. Infect. Dis. 200, 528–536 (2009).

    CAS  PubMed  Google Scholar 

  212. Silverman, J. A., Schreiber, H. L. T., Hooton, T. M. & Hultgren, S. J. From physiology to pharmacy: developments in the pathogenesis and treatment of recurrent urinary tract infections. Curr. Urol. Rep. 14, 448–456 (2013).

    PubMed  PubMed Central  Google Scholar 

  213. Thumbikat, P., Waltenbaugh, C., Schaeffer, A. J. & Klumpp, D. J. Antigen-specific responses accelerate bacterial clearance in the bladder. J. Immunol. 176, 3080–3086 (2006).

    CAS  PubMed  Google Scholar 

  214. Jodal, U. et al. Local antibodies in childhood urinary tract infection: a preliminary study. Int. Arch. Allergy Appl. Immunol. 47, 537–546 (1974).

    CAS  PubMed  Google Scholar 

  215. Ethel, S., Bhat, G. K. & Hegde, B. M. Bacterial adherence and humoral immune response in women with symptomatic and asymptomatic urinary tract infection. Indian. J. Med. Microbiol. 24, 30–33 (2006).

    CAS  PubMed  Google Scholar 

  216. Floege, J., Boddeker, M., Stolte, H. & Koch, K. M. Urinary IgA, secretory IgA and secretory component in women with recurrent urinary tract infections. Nephron 56, 50–55 (1990).

    CAS  PubMed  Google Scholar 

  217. Chan, C. Y., St John, A. L. & Abraham, S. N. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 38, 349–359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Svanborg-Eden, C. & Svennerholm, A. M. Secretory immunoglobulin A and G antibodies prevent adhesion of Escherichia coli to human urinary tract epithelial cells. Infect. Immun. 22, 790–797 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Brumbaugh, A. R. & Mobley, H. L. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert. Rev. Vaccines 11, 663–676 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Mike, L. A., Smith, S. N., Sumner, C. A., Eaton, K. A. & Mobley, H. L. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc. Natl Acad. Sci. USA 113, 13468–13473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997).

    CAS  PubMed  Google Scholar 

  222. Habibi, M. et al. Intranasal immunization with fusion protein MrpH.FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis. Mol. Immunol. 64, 285–294 (2015).

    CAS  PubMed  Google Scholar 

  223. Asadi Karam, M. R., Oloomi, M., Mahdavi, M., Habibi, M. & Bouzari, S. Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 31, 1210–1216 (2013).

    CAS  PubMed  Google Scholar 

  224. Billips, B. K., Yaggie, R. E., Cashy, J. P., Schaeffer, A. J. & Klumpp, D. J. A live-attenuated vaccine for the treatment of urinary tract infection by uropathogenic Escherichia coli. J. Infect. Dis. 200, 263–272 (2009).

    CAS  PubMed  Google Scholar 

  225. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    CAS  PubMed  Google Scholar 

  226. Lutay, N. et al. Bacterial control of host gene expression through RNA polymerase II. J. Clin. Invest. 123, 2366–2379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. O’Brien, V. P. et al. A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nat. Microbiol. 2, 16196 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Wang, J. Neutrophils in tissue injury and repair. Cell Tissue Res. 371, 531–539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Ambite, I. et al. Bacterial suppression of RNA polymerase II-dependent host gene expression. Pathogens 5, 49 (2016).

    PubMed Central  Google Scholar 

  230. Hannan, T. J. et al. Inhibition of cyclooxygenase-2 prevents chronic and recurrent cystitis. EBioMedicine 1, 46–57 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Liao, X. et al. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc. Natl Acad. Sci. USA 115, E4661–E4669 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Minutti, C. M. et al. A macrophage-pericyte axis directs tissue restoration via amphiregulin-induced transforming growth factor beta activation. Immunity 50, 645–654.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Minutti, C. M., Knipper, J. A., Allen, J. E. & Zaiss, D. M. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11 (2017).

    CAS  PubMed  Google Scholar 

  236. Naber, K. G. Treatment options for acute uncomplicated cystitis in adults. J. Antimicrob. Chemother. 46, 23–27 (2000).

    CAS  PubMed  Google Scholar 

  237. Bauer, H. W. et al. A long-term, multicenter, double-blind study of an Escherichia coli extract (OM-89) in female patients with recurrent urinary tract infections. Eur. Urol. 47, 542–548 (2005).

    PubMed  Google Scholar 

  238. Grischke, E. M. & Ruttgers, H. Treatment of bacterial infections of the female urinary tract by immunization of the patients. Urol. Int. 42, 338–341 (1987).

    CAS  PubMed  Google Scholar 

  239. Marinova, S. et al. Cellular and humoral systemic and mucosal immune responses stimulated by an oral polybacterial immunomodulator in patients with chronic urinary tract infections. Int. J. Immunopathol. Pharmacol. 18, 457–473 (2005).

    CAS  PubMed  Google Scholar 

  240. Aziminia, N. et al. Vaccines for the prevention of recurrent urinary tract infections: a systematic review. BJU Int. 123, 753–768 (2019).

    PubMed  Google Scholar 

  241. Inoue, M. et al. Safety, tolerability and immunogenicity of the ExPEC4V (JNJ-63871860) vaccine for prevention of invasive extraintestinal pathogenic Escherichia coli disease: a phase 1, randomized, double-blind, placebo-controlled study in healthy Japanese participants. Hum. Vaccin. Immunother. 14, 2150–2157 (2018).

    PubMed  PubMed Central  Google Scholar 

  242. Kruze, D., Holzbecher, K., Andrial, M. & Bossart, W. Urinary antibody response after immunisation with a vaccine against urinary tract infection. Urol. Res. 17, 361–366 (1989).

    CAS  PubMed  Google Scholar 

  243. Huttner, A. & Gambillara, V. The development and early clinical testing of the ExPEC4V conjugate vaccine against uropathogenic Escherichia coli. Clin. Microbiol. Infect. 24, 1046–1050 (2018).

    CAS  PubMed  Google Scholar 

  244. National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03500679 (2019).

  245. Bleidorn, J., Gagyor, I., Kochen, M. M., Wegscheider, K. & Hummers-Pradier, E. Symptomatic treatment (ibuprofen) or antibiotics (ciprofloxacin) for uncomplicated urinary tract infection? — results of a randomized controlled pilot trial. BMC Med. 8, 30 (2010).

    PubMed  PubMed Central  Google Scholar 

  246. Kronenberg, A. et al. Symptomatic treatment of uncomplicated lower urinary tract infections in the ambulatory setting: randomised, double blind trial. BMJ 359, j4784 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Gagyor, I. et al. Ibuprofen versus fosfomycin for uncomplicated urinary tract infection in women: randomised controlled trial. BMJ 351, h6544 (2015).

    PubMed  PubMed Central  Google Scholar 

  248. Bleidorn, J., Hummers-Pradier, E., Schmiemann, G., Wiese, B. & Gagyor, I. Recurrent urinary tract infections and complications after symptomatic versus antibiotic treatment: follow-up of a randomised controlled trial. Ger. Med. Sci. 14, Doc01 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Vik, I. et al. Ibuprofen versus pivmecillinam for uncomplicated urinary tract infection in women — a double-blind, randomized non-inferiority trial. PLoS Med. 15, e1002569 (2018).

    PubMed  PubMed Central  Google Scholar 

  250. Tasdemir, S. et al. Intravesical hyaluronic acid and chondroitin sulfate alone and in combination for urinary tract infection: assessment of protective effects in a rat model. Int. J. Urol. 19, 1108–1112 (2012).

    CAS  PubMed  Google Scholar 

  251. Constantinides, C. et al. Prevention of recurrent bacterial cystitis by intravesical administration of hyaluronic acid: a pilot study. BJU Int. 93, 1262–1266 (2004).

    CAS  PubMed  Google Scholar 

  252. Damiano, R. et al. Prevention of recurrent urinary tract infections by intravesical administration of hyaluronic acid and chondroitin sulphate: a placebo-controlled randomised trial. Eur. Urol. 59, 645–651 (2011).

    CAS  PubMed  Google Scholar 

  253. Kranjcec, B., Papes, D. & Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J. Urol. 32, 79–84 (2014).

    CAS  PubMed  Google Scholar 

  254. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl Med. 3, 109ra115 (2011).

    PubMed  PubMed Central  Google Scholar 

  255. Yamamoto, S. et al. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J. Urol. 157, 1127–1129 (1997).

    CAS  PubMed  Google Scholar 

  256. Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528–532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Zdziarski, J. et al. Host imprints on bacterial genomes — rapid, divergent evolution in individual patients. PLoS Pathog. 6, e1001078 (2010).

    PubMed  PubMed Central  Google Scholar 

  258. Zdziarski, J., Svanborg, C., Wullt, B., Hacker, J. & Dobrindt, U. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect. Immun. 76, 695–703 (2008).

    CAS  PubMed  Google Scholar 

  259. Ambite, I. et al. Fimbriae reprogram host gene expression — divergent effects of P and type 1 fimbriae. PLoS Pathog. 15, e1007671 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Sunden, F., Hakansson, L., Ljunggren, E. & Wullt, B. Bacterial interference — is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection? Int. J. Antimicrob. Agents 28, S26–S29 (2006).

    CAS  PubMed  Google Scholar 

  261. Sunden, F., Hakansson, L., Ljunggren, E. & Wullt, B. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J. Urol. 184, 179–185 (2010).

    PubMed  Google Scholar 

  262. Prasad, A., Cevallos, M. E., Riosa, S., Darouiche, R. O. & Trautner, B. W. A bacterial interference strategy for prevention of UTI in persons practicing intermittent catheterization. Spinal Cord. 47, 565–569 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Wullt, B. & Svanborg, C. Deliberate establishment of asymptomatic bacteriuria — a novel strategy to prevent recurrent UTI. Pathogens 5, 52 (2016).

    PubMed Central  Google Scholar 

  264. Sehgal, A. et al. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 9, 1272 (2018).

    PubMed  PubMed Central  Google Scholar 

  265. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Goplen, N. P. et al. Tissue-resident macrophages limit pulmonary CD8 resident memory T cell establishment. Front. Immunol. 10, 2332 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Google Scholar 

  268. Whitacre, C. C. Sex differences in autoimmune disease. Nat. Immunol. 2, 777–780 (2001).

    CAS  PubMed  Google Scholar 

  269. Raz, R. & Stamm, W. E. A controlled trial of intravaginal estriol in postmenopausal women with recurrent urinary tract infections. N. Engl. J. Med. 329, 753–756 (1993).

    CAS  PubMed  Google Scholar 

  270. Eriksen, B. A randomized, open, parallel-group study on the preventive effect of an estradiol-releasing vaginal ring (Estring) on recurrent urinary tract infections in postmenopausal women. Am. J. Obstet. Gynecol. 180, 1072–1079 (1999).

    CAS  PubMed  Google Scholar 

  271. Luthje, P. et al. Estrogen supports urothelial defense mechanisms. Sci. Transl Med. 5, 190ra180 (2013).

    Google Scholar 

  272. Shaikh, N., Morone, N. E., Bost, J. E. & Farrell, M. H. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr. Infect. Dis. J. 27, 302–308 (2008).

    PubMed  Google Scholar 

  273. Kohler, T. S., Yadven, M., Manvar, A., Liu, N. & Monga, M. The length of the male urethra. Int. Braz. J. Urol. 34, 451–454 (2008).

    PubMed  Google Scholar 

  274. Babikir, I. H. et al. The impact of cathelicidin, the human antimicrobial peptide LL-37 in urinary tract infections. BMC Infect. Dis. 18, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Rousseau for critical reading of the manuscript. L.L.M. is part of the Pasteur-Paris University (PPU) International PhD Program, which received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 665807 and from the Labex Milieu Intérieur (ANR-10-LABX-69-01). We would also like to acknowledge funding from the Agence Nationale de la Recherché (French National Research Agency) grant number ANR-17-CE17-0014 for supporting our work on urinary tract infection and host responses.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the development of this manuscript.

Corresponding author

Correspondence to Molly A. Ingersoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacerda Mariano, L., Ingersoll, M.A. The immune response to infection in the bladder. Nat Rev Urol 17, 439–458 (2020). https://doi.org/10.1038/s41585-020-0350-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0350-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing