Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunnelling measured in a very slow ion–molecule reaction

Abstract

Quantum tunnelling reactions play an important role in chemistry when classical pathways are energetically forbidden1, be it in gas-phase reactions, surface diffusion or liquid-phase chemistry. In general, such tunnelling reactions are challenging to calculate theoretically, given the high dimensionality of the quantum dynamics, and also very difficult to identify experimentally2,3,4. Hydrogenic systems, however, allow for accurate first-principles calculations. In this way the rate of the gas-phase proton-transfer tunnelling reaction of hydrogen molecules with deuterium anions, H2 + D → H + HD, has been calculated5, but has so far lacked experimental verification. Here we present high-sensitivity measurements of the reaction rate carried out in a cryogenic 22-pole ion trap. We observe an extremely low rate constant of (5.2 ± 1.6) × 10−20 cm3 s1. This measured value agrees with quantum tunnelling calculations, serving as a benchmark for molecular theory and advancing the understanding of fundamental collision processes. A deviation of the reaction rate from linear scaling, which is observed at high H2 densities, can be traced back to previously unobserved heating dynamics in radiofrequency ion traps.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experiment.
Fig. 2: Ion–molecule reaction kinetics.
Fig. 3: Density dependence of rates and velocity distributions.
Fig. 4: Tunnelling rate coefficient in comparison with theory.

Similar content being viewed by others

Data availability

The datasets used for this study are available on zenodo.org at https://doi.org/10.5281/zenodo.7148592Source data are provided with this paper.

Code availability

The code used during this study is available from the corresponding author on reasonable request.

References

  1. McMahon, R. J. Chemical reactions involving quantum tunneling. Science 299, 833–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Shannon, R. J., Blitz, M. A., Goddard, A. & Heard, D. E. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 5, 745–749 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Tizniti, M. et al. The rate of the F + H2 reaction at very low temperatures. Nat. Chem. 6, 141 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, T. et al. Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunnelling. Nat. Chem. 11, 744–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Yuen, C. H. et al. Quantum-tunneling isotope-exchange reaction H2 + D → HD + H. Phys. Rev. A 97, 022705 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Ferrière, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001).

    Article  ADS  Google Scholar 

  7. Gerlich, D., Herbst, E. & Roueff, E. \({\text{H}}_{3}^{+}\) + HD → H2D+ + H2: low-temperature laboratory measurements and interstellar implications. Planet. Space Sci. 50, 1275 (2002).

    Article  ADS  CAS  Google Scholar 

  8. Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Kitsopoulos, T. N., Buntine, M. A., Baldwin, D. P., Zare, R. N. & Chandler, D. W. Reaction product imaging: the H + D2 reaction. Science 260, 1605 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Harich, S. A. et al. Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction. Nature 419, 281 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Stevenson, D. & Hirschfelder, J. The structure of H3, \({\text{H}}_{3}^{+}\), and of \({\text{H}}_{3}^{+}\). iv. J. Chem. Phys. 5, 933–940 (1937).

    Article  ADS  CAS  Google Scholar 

  12. Stärck, J. & Meyer, W. Ab initio potential energy surface for the collisional system H + H2 and properties of its van der Waals complex. Chem. Phys. 176, 83–95 (1993).

    Article  Google Scholar 

  13. Wang, W. et al. Observations of \({\text{H}}_{3}^{-}\) and \({\text{H}}_{3}^{-}\) from dielectric barrier discharge plasmas. Chem. Phys. Lett. 377, 512–518 (2003).

    Article  ADS  CAS  Google Scholar 

  14. Ayouz, M., Lopes, R., Raoult, M., Dulieu, O. & Kokoouline, V. Formation of \({\text{H}}_{3}^{-}\) by radiative association of H2 and H in the interstellar medium. Phys. Rev. A 83, 052712 (2011).

    Article  ADS  Google Scholar 

  15. Zimmer, M. & Linder, F. Crossed-beam study of the H + D2 → HD(v’) + D rearrangement reaction in the collision energy range 0.3–3 eV. J. Phys. B 28, 2671 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Belyaev, A. K., Colbert, D. T., Groenenboom, G. C. & Miller, W. H. State-to-state reaction probabilities for H + H2, D2 collisions. Chem. Phys. Lett. 209, 309–314 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Haufler, E., Schlemmer, S. & Gerlich, D. Absolute integral and differential cross sections for the reactive scattering of H + D2 and D + H2. J. Phys. Chem. A 101, 6441–6447 (1997).

    Article  CAS  Google Scholar 

  18. Giri, K. & Sathyamurthy, N. Influence of reagent rotation on (H, D2) and (D, H2) collisions: a quantum mechanical study. J. Phys. Chem. A 110, 13843–13849 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W., Liu, Y. & He, X. Effect of reagent rotation on the integral cross-sections and isotopic branching of the reactions H + HD and D + HD. Chem. Phys. Lett. 489, 237–241 (2010).

    Article  ADS  CAS  Google Scholar 

  20. Wang, D. & Jaquet, R. Reactive scattering for different isotopologues of the \({\text{H}}_{3}^{-}\) system: comparison of different potential energy surfaces. J. Phys. Chem. A 117, 7492–7501 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Mikosch, J. et al. Inverse temperature dependent lifetimes of transient SN2 ion–dipole complexes. J. Phys. Chem. A 112, 10448–10452 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Herbst, E. et al. Calculations on the rate of the ion–molecule reaction between N\({\text{H}}_{3}^{+}\) and H2. J. Chem. Phys. 94, 7842–7849 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Markus, C. R. et al. Vibrational excitation hindering an ion–molecule reaction: the c-C3\({\text{H}}_{2}^{+}\) – H2 collision complex. Phys. Rev. Lett. 124, 233401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Endres, E. S., Lakhmanskaya, O., Simpson, M., Spieler, S. & Wester, R. Upper limit of a tunneling reaction rate for D + H2 → HD + H. Phys. Rev. A 95, 022706 (2017).

    Article  ADS  Google Scholar 

  25. Gerlich, D. Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59, 256 (1995).

    Article  ADS  Google Scholar 

  26. Wester, R. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B 42, 154001 (2009).

    Article  ADS  Google Scholar 

  27. Asvany, O. & Schlemmer, S. Numerical simulations of kinetic ion temperature in a cryogenic linear multipole trap. Int. J. Mass spectrom. 279, 147 (2009).

    Article  CAS  Google Scholar 

  28. Wakelam, V. et al. A KInetic Database for Astrochemistry (KIDA). Astrophys. J. Suppl. Ser. 199, 21 (2012).

    Article  ADS  Google Scholar 

  29. Luo, H., Wu, Y. & Ju, L. Variational transition-state theory study of the D+H2 → HD+H reaction and the H+D2 → HD+D reaction. Comput. Theor. Chem. 963, 475–478 (2011).

    Article  CAS  Google Scholar 

  30. Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Best, T. et al. Absolute photodetachment cross-section measurements for hydrocarbon chain anions. Astrophys. J. 742, 63 (2011).

    Article  ADS  Google Scholar 

  32. Endres, E. S. et al. Incomplete rotational cooling in a 22-pole ion trap. J. Mol. Spectrosc. 332, 134 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Jusko, P., Asvany, O., Wallerstein, A.-C., Brünken, S. & Schlemmer, S. Two-photon rotational action spectroscopy of cold OH at 1 ppb accuracy. Phys. Rev. Lett. 112, 253005 (2014).

    Article  ADS  PubMed  Google Scholar 

  34. Silva, R. Jr, Plastino, A. R. & Lima, J. A. S. A Maxwellian path to the q-nonextensive velocity distribution function. Phys. Lett. A 249, 401–408 (1998).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  35. Jiulin, D. The nonextensive parameter and Tsallis distribution for self-gravitating systems. Europhys. Lett. 67, 893–899 (2004).

    Article  ADS  Google Scholar 

  36. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Kokoouline, C. H. Yuen and M. Ayouz for fruitful discussions. This work has been supported by the Austrian Science Fund (FWF) through Project I2920-N27 and through the Doctoral Programme Atoms, Light, and Molecules, Project No. W1259-N27.

Author information

Authors and Affiliations

Authors

Contributions

R. Wester conceived the experiment and supervised the project. R. Wild, M.N., M.S. and T.D.T. carried out the measurements. R. Wild, with support from M.N. and R. Wester, carried out the simulations. R. Wild and R. Wester wrote the manuscript, which was discussed and approved by all authors.

Corresponding author

Correspondence to Roland Wester.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ion trap simulations for different densities.

Distributions of ion number and energy as a function of the radial position in the trap, at different collision rates and with a buffer gas temperature of 20 K. a With higher collision rates, ions move, on average, slightly closer to the centre, but also increase in number at large radii. Mean free path lengths are shown for reference. b When the mean free path becomes small, energies close to the trap rods increase substantially, indicating multiple heating collisions before moving away from the trap edges. The collision rates correspond to H2 densities of 4.8 × 1013, 1014 and 1015 cm−3, respectively.

Source data

Extended Data Fig. 2 Ion trap simulations including stray electric fields.

Numerical simulations of the expected reaction rates at a hydrogen gas density of 1.2 × 1015 cm−3, with error bars as in Fig. 3a. The electric fields were chosen to be homogeneous and oriented in one direction perpendicular to the RF trapping rods, which has the effect of slightly pushing the ions towards the RF electrodes on one side. The simulations show that an extra field on the order of 10 mV mm−1 could account for the higher measured reaction rates at this density.

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wild, R., Nötzold, M., Simpson, M. et al. Tunnelling measured in a very slow ion–molecule reaction. Nature 615, 425–429 (2023). https://doi.org/10.1038/s41586-023-05727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05727-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing