Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci

An Author Correction to this article was published on 08 January 2019

This article has been updated

Abstract

Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P < 5.0 × 10−8) with PrCa and one locus significantly associated with early-onset PrCa (≤55 years). Our findings include missense variants rs1800057 (odds ratio (OR) = 1.16; P = 8.2 × 10−9; G>C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10−9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55–2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04–6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ELLIPSE/PRACTICAL study overview of PrCa GWAS meta-analysis.
Fig. 2: Locus Explorer plots depicting the statistical association with PrCa and biological context of variants from four of the newly identified PrCa-risk loci (n = 74,849 biologically independent samples).

Similar content being viewed by others

Change history

  • 08 January 2019

    In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.

References

  1. Goh, C. L. et al. Genetic variants associated with predisposition to prostate cancer and potential clinical implications. J. Intern. Med. 271, 353–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    Article  PubMed  Google Scholar 

  3. Cuzick, J. et al. Prevention and early detection of prostate cancer. Lancet Oncol. 15, e484–e492 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  4. Altekruse, S. F. et al. Spatial patterns of localized-stage prostate cancer incidence among white and black men in the southeastern United States, 1999–2001. Cancer Epidemiol. Biomarkers Prev. 19, 1460–1467 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  5. Stanford, J. L. & Ostrander, E. A. Familial prostate cancer. Epidemiol. Rev. 23, 19–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Bunker, C. H. et al. High prevalence of screening-detected prostate cancer among Afro-Caribbeans: the Tobago Prostate Cancer Survey. Cancer Epidemiol. Biomarkers Prev. 11, 726–729 (2002).

    PubMed  Google Scholar 

  7. Ghadirian, P., Howe, G. R., Hislop, T. G. & Maisonneuve, P. Family history of prostate cancer: a multi-center case-control study in Canada. Int. J. Cancer 70, 679–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Grönberg, H., Damber, L. & Damber, J. E. Familial prostate cancer in Sweden: a nationwide register cohort study. Cancer 77, 138–143 (1996).

    Article  PubMed  Google Scholar 

  9. Matikaine, M. P. et al. Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 12, 223–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Eeles, R. et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat. Rev. Urol. 11, 18–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Eeles, R. A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 385–391 (2013). e1–e2.

    Article  CAS  PubMed  Google Scholar 

  12. Al Olama, A. A. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Al Olama, A. A. et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat. Genet. 41, 1058–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Eeles, R. A. et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 41, 1116–1121 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Gudmundsson, J. et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat. Genet. 41, 1122–1126 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gudmundsson, J. et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet. 40, 281–283 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39, 977–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat. Genet. 43, 570–573 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kote-Jarai, Z. et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat. Genet. 43, 785–791 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schumacher, F. R. et al. Genome-wide association study identifies new prostate cancer susceptibility loci. Hum. Mol. Genet. 20, 3867–3875 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sun, J. et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet. 40, 1153–1155 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42, 751–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Duggan, D. et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Natl. Cancer Inst. 99, 1836–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Amin Al Olama, A. et al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum. Mol. Genet. 22, 408–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Amos, C. I. et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomarkers Prev. 26, 126–135 (2017).

    Article  PubMed  Google Scholar 

  31. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011).

    Article  PubMed  Google Scholar 

  32. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  33. de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Leongamornlert, D. et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br. J. Cancer 110, 1663–1672 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mateo, J. et al. DNA-repair defects and Olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Meyer, A. et al. ATM missense variant P1054R predisposes to prostate cancer. Radiother. Oncol. 83, 283–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Sánchez-Huertas, C. & Lüders, J. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25, R294–R299 (2015).

    Article  PubMed  Google Scholar 

  38. Volodko, N., Gordon, M., Salla, M., Ghazaleh, H. A. & Baksh, S. RASSF tumor suppressor gene family: biological functions and regulation. FEBS Lett. 588, 2671–2684 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Kudo, T. et al. The RASSF3 candidate tumor suppressor induces apoptosis and G1-S cell-cycle arrest via p53. Cancer Res. 72, 2901–2911 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wissmann, C. et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol. 201, 204–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Yee, D. S. et al. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol. Cancer 9, 162 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  42. Allen, H. F., Wade, P. A. & Kutateladze, T. G. The NuRD architecture. Cell. Mol. Life Sci. 70, 3513–3524 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lai, A. Y. & Wade, P. A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat. Rev. Cancer 11, 588–596 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Basta, J. & Rauchman, M. The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 165, 36–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. McDermott, D. F. & Atkins, M. B. PD-1 as a potential target in cancer therapy. Cancer Med. 2, 662–673 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics 9, 621–634 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kiciński, M., Vangronsveld, J. & Nawrot, T. S. An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 6, e27130 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  48. Albright, F. et al. Prostate cancer risk prediction based on complete prostate cancer family history. Prostate 75, 390–398 (2015).

    Article  PubMed  Google Scholar 

  49. Wang, M. et al. Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer. Nat. Commun. 6, 8469 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 26, 2190–2191 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Amin Al Olama, A. et al. Risk analysis of prostate cancer in PRACTICAL, a multinational consortium, using 25 known prostate cancer susceptibility loci. Cancer Epidemiol. Biomarkers Prev. 24, 1121–1129 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5, e13984 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Schaefer, C. F. et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674–D679 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Romero, P. et al. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 6, R2 (2005).

    Article  PubMed  Google Scholar 

  57. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kandasamy, K. et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 11, R3 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  61. Wang, L., Jia, P., Wolfinger, R. D., Chen, X. & Zhao, Z. Gene set analysis of genome-wide association studies: methodological issues and perspectives. Genomics 98, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, K., Li, M. & Hakonarson, H. Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, K., Li, M. & Bucan, M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 81, 1278–1283 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We pay tribute to Brian Henderson for his vision and leadership; he was a driving force behind the OncoArray project and he unfortunately passed away before seeing its fruition. We also thank the individuals who participated in these studies enabling this work.

Genotyping of the OncoArray was funded by the US National Institutes of Health (NIH) (U19 CA 148537 for the ELLIPSE project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract no. HHSN268201200008I. Additional analytical support was provided by NIH NCI U01 CA188392 (to F.R.S.).

Funding for the iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement no. 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, and C8197/A16565), the NIH (CA128978) and Post-Cancer GWAS Initiative (1U19 CA148537, 1U19 CA148065, and 1U19 CA148112; the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.

This work was supported by the Canadian Institutes of Health Research; the European Commission's Seventh Framework Programme grant agreement no. 223175 (HEALTH-F2-2009-223175); Cancer Research UK grants C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692, and C16913/A6135; and NIH Cancer Post-Cancer GWAS initiative grant no. 1 U19 CA 148537-01 (the GAME-ON initiative).

We also thank the following for funding support: the Institute of Cancer Research and the Everyman Campaign, the Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), the Orchid Cancer Appeal, the National Cancer Research Network UK, and the National Cancer Research Institute (NCRI) UK. We are grateful for the support of NIHR funding to the NIHR Biomedical Research Centre at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust.

The Prostate Cancer Program of Cancer Council Victoria also acknowledges grant support from the National Health and Medical Research Council, Australia (126402, 209057, 251533, 396414, 450104, 504700, 504702, 504715, 623204, 940394, and 614296), VicHealth, Cancer Council Victoria, the Prostate Cancer Foundation of Australia, the Whitten Foundation, PricewaterhouseCoopers, and Tattersall’s. E.A.O., D.M.K., and E.M.K. acknowledge the Intramural Program of the National Human Genome Research Institute for support.

The BPC3 was supported by the NIH, National Cancer Institute (cooperative agreements U01-CA98233 to D.J.H., U01-CA98710 to S.M.G., U01-CA98216 to E.R., and U01-CA98758 to B.E.H., and the Intramural Research Program of the NIH/National Cancer Institute, Division of Cancer Epidemiology and Genetics).

The CAPS GWAS study was supported by the Swedish Cancer Foundation (grant nos. 09-0677, 11-484, and 12-823), the Cancer Risk Prediction Center (CRisP; http://ki.se/en/meb/crisp/), a Linneus Centre grant (contract ID 70867902) financed by the Swedish Research Council, and the Swedish Research Council (grant nos. K2010-70X-20430-04-3, and 2014-2269).

PEGASUS was supported by the Intramural Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH.

A full description of funding and acknowledgements can be found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Writing group: F.R.S., C.A.H., D.V.C., A.A.A.O., S.I.B., M. Ahmed, Z.S.K.-J., and R.A.E. Conception and coordination of OncoArray synthesis: F.R.S., C.I.A., D.F.E., S.J.C., C.A.H., B.E.H., and F.W. Database management: S.B., M.N.B., X.S., K.M., and A.L. Bioinformatics support: E.J.S., T.D., D. Leongamornlert, E.A., C.C.-B., and C.G. Genotyping calling and QC: L.F., J.D., and J.T. Provision of DNA samples and/or phenotypic data: V.L.S., S.M.G., B.D.C., C.M.T., P.J.G., I.M.T., J.B., S.C., L. Moya, J.C., L.H., W.T., G.P.R., H.G., M. Aly, T.N., P. Pharoah, N.P., J.S., T.L.J.T., C. Slavov, A.A., D.A., S.W., A.W., N.H., C.M.L.W., A.M.D., N.B., L.A.M., E.G., G.L.A., O.C.,G.C.T., S.K., L.E.B.F., K.D.S., T.F.O., M.B., L. Maehle, E.M.G., D.E.N., J.L.D., F.C.H., R.M.M., R.C.T., T.J.K., R.J.H., N.E.F., A.F., S.A.I., M.C. Stern, B.S.R., S.L.K., H.O., Y.-J.L., H.-W.Z., N.F., X.M., X.G., G.W., Z.S., G.G.G., M.C. Southey, R.J.M., L.M.F., A.S.K., B.M.K., J. Lubinski, G.C.-V., K.L.P., M.S., J.Y.P., T.A.S., H.-Y.L., J.L.S., C.C., D.W., J. Lim, E.A.O., M.S.G., B.G.N., S.F.N., M.W., R.B., M.A.R., P.I., H.B., K.C., B.H.,C.M., M.L., T.S., J.K., C.J.L., E.M.J., M.R.T., P. Paulo, M.C., S.L.N., L.S., Y.C.D., K.D.R., G.D.M., P.O., A.R., J. Llorca, S.-H.T., D.W.L., L.F.N., D. Lessel, M.G., T.K., R.K., N.U., S.S., C. Sipeky, V.M., M.P., F. Canzian, S.J., T.V.d.B., S. Larkin, P.A.T., C.A.H., M.G.D., J.E.C., M.E.M., M.J.R., G.J., R.H.N.v.S., F.M., T.T., Y.A.K., J.X., K.-T.K., L.C.-A., H.P., A.M., S.N.T., S.K.M., D.J.S., S. Lindstrom, C.T., J.M., D.J.H., E.R., A.S., F. Claessens, L.N.K., L.L.M., R.N.H., M.J.M., Z.C., P.K., F.W., S.J.C., B.E.H., C.A.-H., R.A.E., A.V., A.G.-C., B.F.D., G.C.-T., APCB investigators, IMPACT Study, Canary PASS investigators, BPC3, PRACTICAL, CAPS, PEGASUS, GAME-ON/ELLIPSE, and Profile Study Steering Committee. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Fredrick R. Schumacher, Ali Amin Al Olama or Rosalind A. Eeles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–19 and Supplementary Note

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumacher, F.R., Al Olama, A.A., Berndt, S.I. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50, 928–936 (2018). https://doi.org/10.1038/s41588-018-0142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0142-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing