Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney

Abstract

The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cis-eQTL analysis of the human kidney and genetic variants identified in GWASs of BP (BP-GWAS SNPs).
Fig. 2: cis-sQTL and cis-mQTL analysis of the human kidney and variants identified in GWASs of BP (BP-GWAS SNPs).
Fig. 3: Colocalization and MR analyses.

Similar content being viewed by others

Data availability

The data supporting the results presented in this article are either available in the Supplementary Information (Supplementary Tables and Supplementary Note) or can be obtained from the authors upon reasonable request. The normalized gene expression, splice junction usage and DNA methylation data are archived at the Dryad digital repository (https://doi.org/10.5061/dryad.15dv41nvx). The e-, s- and mQTL summary statistics are available in the Supplementary Tables.

Code availability

Our studies make use of well-established computational and statistical analysis software and these are fully referenced in the Methods. All custom code used to orchestrate these analyses is available on request.

References

  1. Beaney, T. et al. May Measurement Month 2017: an analysis of blood pressure screening results worldwide. Lancet Glob. Health 6, e736–e743 (2018).

    Article  PubMed  Google Scholar 

  2. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doris, P. A. The genetics of blood pressure and hypertension: the role of rare variation. Cardiovasc. Ther. 29, 37–45 (2011).

    Article  PubMed  Google Scholar 

  4. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Warren, H. R. et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. 49, 403–415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Cabrera, C. P. et al. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics. Wiley Interdiscip. Rev. Syst. Biol. Med. 7, 73–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffmann, T. J. et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 49, 54–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wain, L. V. et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70, e4–e19 (2017).

    Article  CAS  Google Scholar 

  14. Do, C. et al. Mechanisms and disease associations of haplotype-dependent allele-specific DNA methylation. Am. J. Hum. Genet. 98, 934–955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Do, C. et al. Genetic–epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol. 18, 120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park, E., Pan, Z., Zhang, Z., Lin, L. & Xing, Y. The expanding landscape of alternative splicing variation in human populations. Am. J. Hum. Genet. 102, 11–26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, A. K. et al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics 15, 145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Raj, T. et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat. Genet. 50, 1584–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, X. et al. Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. Eur. Heart J. 41, 4580–4588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, X. et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 9, 4800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rowland, J. et al. Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney Int. 95, 624–635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ardlie, K. G. et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  26. Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowley, S. D. & Coffman, T. M. The inextricable role of the kidney in hypertension. J. Clin. Invest. 124, 2341–2347 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  28. Morris, A. P. et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 10, 29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, H. et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saferali, A. et al. Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLOS Genet. 15, e1008229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Han, X. et al. Cardiovascular effects of renal distal tubule deletion of the FGF receptor 1 gene. J. Am. Soc. Nephrol. 29, 69–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Shaw, N., Yang, B., Millward, A., Demaine, A. & Hodgkinson, A. AKR1B10 is induced by hyperglycaemia and lipopolysaccharide in patients with diabetic nephropathy. Cell Stress Chaperones 19, 281–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Hartmannová, H. et al. Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum. Mol. Genet. 25, 4062–4079 (2016).

    Article  PubMed  Google Scholar 

  34. Zhang, X. et al. Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nat. Genet. 47, 345–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guantes, R. et al. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 125, 633–644 (2015).

    Article  Google Scholar 

  36. Marques, F. Z. et al. Signatures of miR-181a on the renal transcriptome and blood pressure. Mol. Med. 21, 739–748 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannon, E. et al. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am. J. Hum. Genet. 103, 654–665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schiffrin, E. L., Deng, L. Y., Sventek, P. & Day, R. Enhanced expression of endothelin-1 gene in resistance arteries in severe human essential hypertension. J. Hypertens. 15, 57–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Barbetti, F. & D’Annunzio, G. Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 32, 575–591 (2018).

    Article  PubMed  Google Scholar 

  41. Haas, M. E. et al. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am. J. Hum. Gen. 103, 461–473 (2018).

    Article  CAS  Google Scholar 

  42. Pierce, B. L. & Burgess, S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 178, 1177–1184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kitaba, S., Murota, H., Yahata, Y., Azukizawa, H. & Katayama, I. Novel functional aspect of antihistamines: the impact of bepotastine besilate on substance P-induced events. J. Allergy 2009, 853687 (2009).

    Article  Google Scholar 

  46. Ryu, Y. et al. Class I histone deacetylase inhibitor MS-275 attenuates vasoconstriction and inflammation in angiotensin II-induced hypertension. PLoS ONE 14, e0213186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spritzer, S. D., Bravo, T. P. & Drazkowski, J. F. Topiramate for treatment in patients with migraine and epilepsy. Headache 56, 1081–1085 (2016).

    Article  PubMed  Google Scholar 

  48. Tonstad, S. et al. Efficacy and safety of topiramate in the treatment of obese subjects with essential hypertension. Am. J. Cardiol. 96, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Moradi, S., Kerman, S. R. J. & Mollabashi, M. The effect of topiramate on weight loss in patients with type 2 diabetes. J. Res. Med. Sci. 18, 297–302 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Gamazon, E. R. et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 50, 956–967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kato, N. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet. 47, 1282–1293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Richard, M. A. et al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet. 101, 888–902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tomaszewski, M. et al. Renal mechanisms of association between fibroblast growth factor 1 and blood pressure. J. Am. Soc. Nephrol. 26, 3151–3160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naesens, M. Zero-time renal transplant biopsies. Transplantation 100, 1425–1439 (2016).

    Article  PubMed  Google Scholar 

  55. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 34, 2159–2219 (2013).

    Article  PubMed  Google Scholar 

  56. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  CAS  Google Scholar 

  57. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  58. Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, C. Y. et al. Improved ancestry inference using weights from external reference panels. Bioinformatics 29, 1399–1406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deluca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bengtsson, H., Neuvial, P. & Lun, A. aroma-light v. 3.13.0 (2018); https://doi.org/10.18129/B9.bioc.aroma.light

  69. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  71. Saha, A. et al. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res. 27, 1843–1858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  PubMed  Google Scholar 

  76. Lizio, M. et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siggens, L. & Ekwall, K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J. Intern. Med. 276, 201–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Fortin, J. P., Triche, T. J. & Hansen, K. D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33, 558–560 (2017).

    CAS  PubMed  Google Scholar 

  79. Du, P. et al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11, 587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 14, 293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Graffelman, J. Exploring diallelic genetic markers: the HardyWeinberg package. J. Stat. Softw. 64, 1–23 (2015).

    Article  Google Scholar 

  88. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6, 1–11 (2010).

    Article  Google Scholar 

  91. Parts, L., Stegle, O., Winn, J. & Durbin, R. Joint genetic analysis of gene expression data with inferred cellular phenotypes. PLoS Genet. 7, e1001276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wen, X. Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control. Ann. Appl. Stat. 10, 1619–1638 (2016).

    Article  Google Scholar 

  93. Carithers, L. J. et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv. Biobank. 13, 311–319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. van der Maaten, L. J. P. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).

    Google Scholar 

  95. Huang, D. W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Taggart, A. J. et al. Large-scale analysis of branchpoint usage across species and cell lines. Genome Res. 27, 639–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Artimo, P. et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597–W603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Klausen, M. S. et al. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins 87, 520–527 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).

    CAS  PubMed  Google Scholar 

  107. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401–W407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Blom, N., Sicheritz-Pontén, T., Gupta, R., Gammeltoft, S. & Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lehne, B. et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 16, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schulz, H. et al. Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nat. Commun. 8, 1511 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Canela-Xandri, O., Rawlik, K. & Tenesa, A. An atlas of genetic associations in UK Biobank. Nat. Genet. 50, 1593–1599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malik, R. et al. Low-frequency and common genetic variation in ischemic stroke: the METASTROKE collaboration. Neurology 87, 1306–1306 (2016).

    Article  Google Scholar 

  115. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Teumer, A. et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes 65, 803–817 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bowden, J., Smith, G. D. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Cotto, K. C. et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 46, D1068–D1073 (2017).

    Article  PubMed Central  Google Scholar 

  126. Giambartolomei, C. et al. A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34, 2538–2545 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guo, H. et al. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum. Mol. Genet. 24, 3305–3313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–329 (2015).

    Article  PubMed Central  Google Scholar 

  130. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

  131. Smith, G. D. & Ebrahim, S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? Br. Med. J. 330, 1076–1079 (2005).

    Article  Google Scholar 

  132. Burgess, S., Bowden, J., Dudbridge, F. & Thompson, S. G. Robust instrumental variable methods using multiple candidate instruments with application to Mendelian randomization. Preprint at https://arxiv.org/abs/1606.03729 (2016).

  133. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by British Heart Foundation project grants no. PG/17/35/33001 and no. PG/19/16/34270 and Kidney Research UK grants no. RP_017_20180302 and no. RP_013_20190305 to M.T., National Institutes of Health (NIH) grant no. R01 DK117445-01A1 to A.P.M., NIH (USA) NIDDK grants no. R01 DK108805 and no. R01 DK119380 to M.G.S., British Heart Foundation Personal Chair CH/13/2/30154 and Manchester Academic Health Science Centre: Tissue Bank Grant to B.K., and Medical University of Silesia grants no. KNW-1-152/N/7/K to J.Z. and no. KNW-1-171/N/6/K to W.W. T.J.G. acknowledges support from the European Research Council (ERC-CoG-Inflammatension grant no. 726318) and the European Commission/Narodowe Centrum Badan i Rozwoju, Poland (EraNet-CVD-Plaquefight). P.M. acknowledges support of British Heart Foundation grant no. PG/19/84/34771. D.T. acknowledges support of Medical Research Council New Investigator Research Grant no. MR/R010900/1. B.K. is supported by a British Heart Foundation Personal Chair. G.T. is supported by the Wellcome Trust (grant no. WT206194) and Open Targets. E.C.-G. is supported by a Gates Cambridge Scholarship (no. OPP1144). The Nephrotic Syndrome Study Network Consortium (NEPTUNE), U54-DK-083912, is a part of the NIH Rare Disease Clinical Research Network (RDCRN), supported through a collaboration between the NIH Office of Rare Diseases Research, the National Center for Advancing Translational Sciences and the National Institute of Diabetes, Digestive, and Kidney Diseases. Additional funding and/or programmatic support for this project has also been provided by the University of Michigan, NephCure Kidney International and the Halpin Foundation. Access to TCGA kidney and GTEx data has been granted by the NIH (approvals 50804-2 and 50805-2). The results published here are in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. We thank the Oxford Genomics Centre at the Wellcome Centre for Human Genetics funded by the Wellcome Trust (grant reference no. 203141/Z/16/Z) for the generation and initial processing of sequencing data.

Author information

Authors and Affiliations

Authors

Contributions

J.M.E., X.J., X.X., S.S. and A. Akbarov performed the main analytical and experimental tasks. E.C.-G., M.T.M., C.F., H.G., H.B.T., S.P., S.C., P.R.P., I.W., E.E., M. Salehi, Y.S., M.E., M.D., F.E., B.G., S.E., C.B., J. Bowes, M.C., M.K., A.S.W., D.T., B.K., P.M., T.J.G., R.T.-O’K., G.T., N.J.S., A.H., M.G.S., A.P.M. and F.J.C. provided additional analyses and data. W.W., M. Szulinska, A. Antczak, M.G., R.K., J. Brown, E.Z.-S., J.Z. and P.B. were involved in the collection of kidney resources. M.D., A.N., P.R.P., I.W. and F.J.C. were involved in additional sample processing and sequencing. J.M.E., X.J., X.X., F.J.C., A.P.M. and M.T. contributed to drafting the manuscript. M.T. performed the overall supervision of the project. All authors reviewed and approved the accepted version of the manuscript.

Corresponding author

Correspondence to Maciej Tomaszewski.

Ethics declarations

Competing interests

M.K. reports grants from the NIH and Goldfinch Bio during the conduct of the study, and grants from AstraZeneca, Gilead, Novo Nordisk, Eli Lilly, Janssen, Merck, Elipidera, Certa and Boehringer Ingelheim, outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 rs4750358 as BP-GWAS kidney sSNP and its BEND7 (BEN Domain Containing 7) target.

a, The BP-elevating (A) allele of rs4750358 creates a branch point (orange box) for a new downstream acceptor splice site and facilitates excision of isoform I7b. The branch point for intron excision isoform (IEI) I7a is also marked (yellow box). b, Association between rs4750358 and kidney expression of I7a IEI of BEND7, I7b IEI of BEND7 and total renal expression of BEND7 (Wald test, linear regression). Data are standardized expression values stratified on rs4750358 genotype. All sample sizes (n) are biologically independent samples. Outliers (outside 1.5x interquartile range) are denoted as points. Whiskers denote extent of 1.5x interquartile range. Upper, middle and lower box lines denote 75th, 50th and 25th percentiles, respectively. FDR, false discovery rate; NS, non-significant. c, Simplified intron-exon structures of the terminal portions of renal BEND7-002 isoforms. d, Proportional expression of BEND7 mRNA isoforms in the kidney. e, Amino acids and phosphorylation sites in the C-terminus of protein isoforms BEND7-002a and BEND7-002b. Exon 8b in BEND7-002b protein isoform contains a longer coding sequence replacing a pair of valines with a 20-amino acid stretch (with many polar, mostly charged, amino acids and three additional possible phosphorylation sites at the C-terminus). The orange bar above the peptide sequence shows the amino acids encoded by the last exon. Polar amino acids are highlighted in red, whereas hydrophobic amino acids are shown in blue. Asterisks are used to identify possible phosphorylation sites, for each of which a list of possible protein kinases is provided.

Extended Data Fig. 2 rs4932373 as a BP-GWAS kidney mSNP.

a, rs4932373 (orange solid bar) is a BP-GWAS kidney mSNP. Its renal target (cg04510874, blue solid bar) maps onto the CpG island (green segment) and the promoter region of the FES gene. Chromatin states are shown at the bottom (green, Transcribed; yellow, Enhancer; red, TSS). Yellow solid bar, sentinel BP-GWAS SNP (rs2521501); black dotted bar, single nucleotide variants; red solid bar, CpG sites. b, The opposite direction of effect of rs4932373 genotype on renal expression of FES and kidney DNA methylation at cg04510874 (Wald test, linear regression). Outliers (outside 1.5x interquartile range) are denoted as points. Whiskers denote extent of 1.5x interquartile range. Upper, middle and lower box lines denote 75th, 50th and 25th percentiles, respectively. All sample sizes (n) are biologically independent samples. P, level of statistical significance.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–8.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eales, J.M., Jiang, X., Xu, X. et al. Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nat Genet 53, 630–637 (2021). https://doi.org/10.1038/s41588-021-00835-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00835-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing