Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Optical control of L-type Ca2+ channels using a diltiazem photoswitch

An Author Correction to this article was published on 29 January 2021

This article has been updated

Abstract

L-type Ca2+ channels (LTCCs) play a crucial role in excitation–contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic β-cell function and cardiac activity under optical control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of the light-regulated diltiazem derivative FHU-779.
Fig. 2: FHU-779 allows photoswitching of LTCC in pancreatic β cells, cardiomyocytes and mouse hearts.

Change history

  • 02 August 2019

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.

  • 29 January 2021

    A Correction to this paper has been published: https://doi.org/10.1038/s41589-021-00744-3

References

  1. Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. Pharmacol. Rev. 67, 821–870 (2015).

    Article  CAS  Google Scholar 

  2. Catterall, W. A., Wisedchaisri, G. & Zheng, N. Nat. Chem. Biol. 13, 455–463 (2017).

    Article  CAS  Google Scholar 

  3. Wheeler, D. G., Barrett, C. F., Groth, R. D., Safa, P. & Tsien, R. W. J. Cell Biol. 183, 849–863 (2008).

    Article  CAS  Google Scholar 

  4. Rorsman, P. & Ashcroft, F. M. Physiol. Rev. 98, 117–214 (2018).

    Article  CAS  Google Scholar 

  5. Kepplinger K.J.F. & Romanin C. in Voltage-Gated Calcium Channels (ed. Zamponi, G.W.) 219–230 (2005).

  6. Grissmer, S. et al. Mol. Pharmacol. 45, 1227–1234 (1994).

    CAS  PubMed  Google Scholar 

  7. Shabbir, W. et al. Br. J. Pharmacol. 162, 1074–1082 (2011).

    Article  CAS  Google Scholar 

  8. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. Biol. Chem. 260, 3440–3450 (1985).

    Article  CAS  Google Scholar 

  9. Mori, M. X., Erickson, M. G. & Yue, D. T. Science 304, 432–435 (2004).

    Article  CAS  Google Scholar 

  10. Freedman, S. B., Dawson, G., Villereal, M. L. & Miller, R. J. J. Neurosci. 4, 1453–1467 (1984).

    Article  CAS  Google Scholar 

  11. Hockerman, G. H., Dilmac, N., Scheuer, T. & Catterall, W. A. Mol. Pharmacol. 58, 1264–1270 (2000).

    Article  CAS  Google Scholar 

  12. Zhang, Y. et al. J. Biol. Chem. 291, 20113–20124 (2016).

    Article  CAS  Google Scholar 

  13. Lenaeus, M. J. et al. Proc. Natl Acad. Sci. USA 114, E3051–E3060 (2017).

    Article  CAS  Google Scholar 

  14. Tikhonov, D. B. & Zhorov, B. S. J. Biol. Chem. 283, 17594–17604 (2008).

    Article  CAS  Google Scholar 

  15. Rutter, G. A., Pullen, T. J., Hodson, D. J. & Martinez-Sanchez, A. Biochem. J. 466, 203–218 (2015).

    Article  CAS  Google Scholar 

  16. Cook, D. L. & Ikeuchi, M. Diabetes 38, 416–421 (1989).

    Article  CAS  Google Scholar 

  17. Bell, R. M., Mocanu, M. M. & Yellon, D. M. J. Mol. Cell. Cardiol. 50, 940–950 (2011).

    Article  CAS  Google Scholar 

  18. Lapp, H. et al. Sci. Rep. 7, 9629 (2017).

    Article  Google Scholar 

  19. Morad, M., Goldman, Y. E. & Trentham, D. R. Nature 304, 635–638 (1983).

    Article  CAS  Google Scholar 

  20. Gurney, A. M. & Lester, H. A. Physiol. Rev. 67, 583–617 (1987).

    Article  CAS  Google Scholar 

  21. Mourot, A. et al. Nat. Methods 9, 396–402 (2012).

    Article  CAS  Google Scholar 

  22. Li, D. S., Yuan, Y. H., Tu, H. J., Liang, Q. L. & Dai, L. J. Nat. Protoc. 4, 1649–1652 (2009).

    Article  CAS  Google Scholar 

  23. Bruegmann, T. et al. Nat. Methods 7, 897–900 (2010).

    Article  CAS  Google Scholar 

  24. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  25. Frank, J. A. et al. Chem. Sci. 8, 7604–7610 (2017).

    Article  CAS  Google Scholar 

  26. Tikhonov, D. B. & Zhorov, B. S. J. Gen. Physiol. 149, 465–481 (2017).

    Article  CAS  Google Scholar 

  27. Allen, F. H. et al. J. Chem. Soc., Perkin Trans. 2, s1–s19 (1987). 1987.

    Article  Google Scholar 

  28. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  CAS  Google Scholar 

  29. Garden, D. P. & Zhorov, B. S. J. Comput. Aided Mol. Des. 24, 91–105 (2010).

    Article  CAS  Google Scholar 

  30. Zhorov, B. S. & Tikhonov, D. B. J. Neurochem. 88, 782–799 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank G.R. Lewin and M. Moroni (MDC Berlin) for the TRAAK-GFP construct, M.B. Johnny (Johns Hopkins University) for Cav1.2Δ1671-G12-CaMMUT construct, J. Striessnig (University of Innsbruck) for Cav1.3, Cav1.2, β3, α2δ constructs and H. Abriel (University of Bern) for a HEK293 stable cell line expressing Nav1.5. T.F. and J.G.D thank S.W. Hell for general support. D.T. was supported by the Deutsche Forschungsgemeinschaft (SFB 749) and Center for Integrated Protein Science Munich (CIPSM). M.S. was supported by the DFG (SPP1926). N.K. was supported by the Deutsche Forschungsgemeinschaft (SFB 1116, TP A01) and the BMBF (DZHK, FKZ: 81 × 2800159). D.J.H. was supported by a Diabetes UK R.D. Lawrence (12/0004431) and EFSD/Novo Nordisk Rising Star Fellowships, a Wellcome Trust Institutional Support Award, and COMPARE Primer, MRC Project (MR/N00275X/1) and ERC Starting Grants (OptoBETA; 715884). N.H. thanks the “Deutsche Telekom Stiftung” and the LMUMentoring program for financial support. B.S.Z. acknowledges grants from NSERC, Canada (GRPIN-2014-04894) and Russian Science Foundation (17-15-01292). P.S. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, GRK1873, SA 1785/7-1, SA 1785/9-1).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by T.F., N.K. and D.T. Patch-clamp characterization of FHU-779 was carried out by T.F., J.A.F., D.M., T.B. and J.G.D. Ratiometric Ca2+ imaging in HEK293T cells was performed by T.F. and M.S. Ca2+ imaging of pancreatic islets was carried out by N.H.F.F and D.J.H. Heart-rate modulation on Langendorff-perfused hearts was performed by T.B., T.F. and P.S. and FP experiments by D.M. and P.S. Molecular modeling was performed by D.B.T. and B.S.Z. Synthesis of FHU-779 was carried out by F.M.E.H. and N.H. T.F., D.T. and N.K. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Timm Fehrentz, Nikolaj Klöcker or Dirk Trauner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Figures 1–10

Reporting Summary

Supplementary Note 1

Supplementary Video 1

Depolarization of HEK293T cells expressing Cav1.2Δ1671-G12-CaMMUT, β3, α2δ1 and TRAAK-GFP.

Supplementary Video 2

Photoswitching of Ca2+ influx into HEK293T expressing Cav1.2Δ1671-G12-CaMMUT, β3, α2δ1 and TRAAK-GFP.

Supplementary Video 3

Optical control of Ca2+ influx into HEK293T cells expressing Cav1.2Δ1671-G12-CaMMUT, β3, α2δ1 and TRAAK-GFP in the presence of 10 mM diltiazem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehrentz, T., Huber, F.M.E., Hartrampf, N. et al. Optical control of L-type Ca2+ channels using a diltiazem photoswitch. Nat Chem Biol 14, 764–767 (2018). https://doi.org/10.1038/s41589-018-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0090-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing