Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structure of the human MT1–Gi signaling complex

Abstract

Melatonin receptors (MT1 and MT2) transduce inhibitory signaling by melatonin (N-acetyl-5-methoxytryptamine), which is associated with sleep induction and circadian rhythm modulation. Although recently reported crystal structures of ligand-bound MT1 and MT2 elucidated the basis of ligand entry and recognition, the ligand-induced MT1 rearrangement leading to Gi-coupling remains unclear. Here we report a cryo-EM structure of the human MT1–Gi signaling complex at 3.3 Å resolution, revealing melatonin-induced conformational changes propagated to the G-protein-coupling interface during activation. In contrast to other Gi-coupled receptors, MT1 exhibits a large outward movement of TM6, which is considered a specific feature of Gs-coupled receptors. Structural comparison of Gi and Gs complexes demonstrated conformational diversity of the C-terminal entry of the Gi protein, suggesting loose and variable interactions at the end of the α5 helix of Gi protein. These notions, together with our biochemical and computational analyses, highlight variable binding modes of Gαi and provide the basis for the selectivity of G-protein signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structures.
Fig. 2: Ligand-binding site.
Fig. 3: Activation mechanism of MT1.
Fig. 4: Outward movement of TM6 on receptor activation.
Fig. 5: Binding modes of Gi and Gs.
Fig. 6: G-protein interactions at the interfaces.

Similar content being viewed by others

Data availability

Cryo-EM maps and atomic models for the MT1–Gi complex have been deposited in the Electron Microscopy Data Bank and wwPDB with the following accession numbers: EMD-30627 and PDB 7DB6, respectively. The raw images have been deposited in the Electron Microscopy Public Image Archive, under accession code EMPIAR-10714. Source data are provided with this paper.

Code availability

The Python code and data used for the contact and r.m.s.d. analysis are available on GitHub (https://github.com/raimondifranc/gpcr-gprotein-3D-comparison/).

References

  1. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H. & Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587 (1958).

    Article  CAS  Google Scholar 

  2. Snyder, S. H., Axelrod, J., Fischer, J. E. & Wurtman, R. J. Neural and photic regulation of 5-hydroxytryptophan decarboxylase in the rat pineal gland. Nature 203, 981–982 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Wurtman, R. J., Axelrod, J. & Phillips, L. S. Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1073 (1963).

    Article  CAS  PubMed  Google Scholar 

  4. Snyder, S. H., Zweig, M., Axelrod, J. & Fischer, J. E. Control of the circadian rhythm in serotonin content of the rat pineal. Proc. Natl Acad. Sci. USA 53, 301–305 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ganguly, S., Coon, S. L. & Klein, D. C. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 309, 127–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hardeland, R., Pandi-Perumal, S. R. & Cardinali, D. P. Melatonin. Int. J. Biochem. Cell Biol. 38, 313–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jockers, R. et al. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol. 173, 2702–2725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarke, T. C., Black, L. I., Stussman, B. J., Barnes, P. M. & Nahin, R. L. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat. Report. 79, 1–16 (2015).

  9. Harpsøe, N. G., Andersen, L. P. H., Gögenur, I. & Rosenberg, J. Clinical pharmacokinetics of melatonin: a systematic review. Eur. J. Clin. Pharmacol. 71, 901–909 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Kato, K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT 1/MT2 receptor agonist. Neuropharmacology 48, 301–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Millan, M. J. et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther. 306, 954–964 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Vachharajani, N. N., Yeleswaram, K. & Boulton, D. W. Preclinical pharmacokinetics and metabolism of BMS-214778, a novel melatonin receptor agonist. J. Pharm. Sci. 92, 760–772 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Patel, N. et al. Structure-based discovery of potent and selective melatonin receptor agonists. Elife 9, e53779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stauch, B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 569, 284–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Johansson, L. C. et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 569, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579, 609–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Koehl, A. et al. Structure of the μ-opioid receptor-Gi protein complex. Nature 558, 547–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1–Gi1 complex. Nature 572, 80–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Yin, J. et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature 584, 125–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhuang, Y. et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 11, 885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xing, C. et al. Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex. Cell 180, 645–654.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hua, T. et al. Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures. Cell 180, 655–665.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiao, A. et al. Structural basis of Gs and Gi recognition by the human glucagon receptor. Science 367, 1346–1352 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Morimoto, K. et al. Crystal structure of the endogenous agonist-bound prostanoid receptor EP3. Nat. Chem. Biol. 15, 8–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Fan, H. et al. Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat. Chem. Biol. 15, 27–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Toyoda, Y. et al. Ligand binding to human prostaglandin E receptor EP 4 at the lipid-bilayer interface. Nat. Chem. Biol. 15, 18–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kang, Y. et al. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558, 553–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clement, N. et al. Importance of the second extracellular loop for melatonin MT 1 receptor function and absence of melatonin binding in GPR50. Br. J. Pharmacol. 175, 3281–3297 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, Q. et al. Common activation mechanism of class a GPCRs. Elife 8, e50279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. White, K. L. et al. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26, 259–269.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai, C. J. et al. Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Sci. Adv. 4, 7052 (2018).

    Article  CAS  Google Scholar 

  41. Lin, X. et al. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 579, 152–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife 7, e35946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nguyen, A. H. et al. Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nat. Struct. Mol. Biol. 26, 1123–1131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 558, 559–565 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Yuan, D. et al. Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat. Chem. Biol. 16, 507–512 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. García-Nafría, J., Nehmé, R., Edwards, P. C. & Tate, C. G. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620–623 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whitford, M., Stewart, S., Kuzio, J. & Faulkner, P. Identification and sequence analysis of a gene encoding gp67, an abundant envelope glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus. J. Virol. 63, 1393–1399 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  53. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of COOT. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  56. Wang, R. Y. R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. Elife 5, e17219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  58. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  59. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  PubMed  Google Scholar 

  62. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Computational Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  63. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

  67. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  68. Ehlert, F. J., Griffin, M. T., Sawyer, G. W. & Bailon, R. A simple method for estimation of agonist activity at receptor subtypes: comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J. Pharmacol. Exp. Ther. 289, 981–982 (1999).

    CAS  PubMed  Google Scholar 

  69. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucl. Acids Res. 44, D356–D364 (2016); erratum 45, 2936 (2017).

  71. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sievers, F. & Higgins, D. G. in Multiple Sequence Alignment Methods. Methods in Molecular Biology (Methods and Protocols) Vol. 1079 (ed. Russell, D.) 105–116 (Humana Press, 2014).

  73. Mistry, J. et al. Pfam: the protein families database in 2021. Nucl. Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Nakane for assistance with the single-particle analysis; Y. Nomura and Y. Sato for assistance with the scFv16 expression and purification; K. Sato, S. Nakano and A. Inoue at Tohoku University for assistance with the cell culture and the cell-based GPCR assays; and the staff scientists at The University of Tokyo’s cryo-EM facility, especially K. Kobayashi, H. Yanagisawa, A. Tsutsumi, M. Kikkawa and R. Danev, for help with cryo-EM data collection. This work was supported by the MEXT Grant-in-Aid for Specially Promoted Research (grant no. 16H06294) to O.N.; by the JST CREST program (no. 20344981) ‘Atomic resolution dynamics of supramolecular complexes essential for cellular functions’ to O.N.; by PRIME (JP19gm5910013) and LEAP (JP20gm0010004) grants from the Japan Agency for Medical Research and Development to A.I.; by the JSPS KAKENHI grant nos. 17K08264 (to A.I.) and 17H05000 and 20H03216 (to T.N.) and by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research) from AMED under grant numbers JP19am0101115 (support number 1111 to O.N.), 19am0101079 (support number 1819; to O.N.) and JP20am0101095 (to A.I.). F.R. thanks the Italian Ministry of University and Research for funding the Department of Excellence Faculty of Sciences of Scuola Normale Superiore. A.I. thanks the Takeda Science Foundation for funding along with The Uehara Memorial Foundation and Ono Medical Research Foundation. R.S. and T.K. acknowledge the Takeda Science Foundation (19H03428), and T.K. thanks the AMED grant (no. JP18gm0910007).

Author information

Authors and Affiliations

Authors

Contributions

H.H.O. prepared the cryo-EM sample of MT1–Gi–scFv16, and W.S. helped with the construction of the Gi-heterotrimer expression. N.N. and S.I. helped with the preparation of scFv16. H.H.O., T.K. and N.T. collected the cryo-EM data. H.H.O. and T.N. processed the cryo-EM data and built the structure of MT1–Gi–scFv16. K.Y. assisted with the structure building and refinement of MT1–Gi–scFv16. H.M. performed MD simulations and analyzed the results. A.I. performed the NanoBiT and flow cytometry assays of the MT1-mutants. H.T., R.S. and T.K. performed radioligand experiments. F.R. performed the contact analysis and clustering of the reported GPCR–G-protein complexes. H.H.O., T.N. and O.N. mainly wrote the manuscript. A.I., T.N. and O.N. supervised the research.

Corresponding authors

Correspondence to Asuka Inoue, Tomohiro Nishizawa or Osamu Nureki.

Ethics declarations

Competing interests

O.N. is a cofounder and scientific advisor for Curreio. All other authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Alisa Glukhova, Ralf Jockers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM analysis procedure.

a, Flow-chart depicting the single particle analysis of the MT1-Gi complex. Fourier Shell Correlation (FSC) curve shows 3.3 Å global resolution with the gold standard criteria (FSC=0.143). Local resolution is indicated on the cryo-EM map. b, A representative micrograph of the MT1-ramelteon-Gαi-Gβ1-Gγ2-scFv16 complex. Similar images (3537 in total) were deposited to the EMPIAR (EMPIAR-10714). c, Representative 2D-averaged images of the MT1-ramelteon-Gαi-Gβ1-Gγ2-scFv16 complex. d, The map versus model FSC curves.

Extended Data Fig. 2 Cryo-EM density-map and comparison of “lid” structures.

a, Cryo-EM density-map of the MT1-ramelteon-Gαi-Gβ1-Gγ2-scFv16 complex (light blue: MT1, yellow: Gαi, green: Gβ1, purple: Gγ2, red: scFv16). The Fab fragment scFv16 binds and stabilizes the interface of Gαi and Gβ1. b, Top view of MT1-Gi and reported lipid GPCRs, viewed from the extracellular side. Receptors (light blue: MT1-Gi, red: TP, blue: EP3, green: EP4) are shown as cylinder models, and ligands are shown as CPK models. MT1-Gi shows the “lid” structure, which is similar to those in the reported crystal structures of lipid GPCRs.

Extended Data Fig. 3 Functional characterization of MT1-mutants.

ac, NanoBiT-G-protein dissociation assays for the constructs used in the cryo-EM analysis and the MT1 mutants. Concentration–response curves for melatonin-dependent G-protein dissociation signals for MT1. To match the expression of MT1-WT to that of mutants with lower expression, 1:5 volume [WT (1:5)] or 1:10 volume [WT (1:10)] MT1-WT plasmid was used. Asterisks denote an increased volume (2.5-fold) of plasmid transfection. Symbols and error bars represent mean and s.e.m. of the indicated independent numbers of experiments (n = 3–5; see Extended Data Table S1). Note that, in most data points, error bars are smaller than the size of the symbols and thus are not visualized in the panels. The results for the construct used in the cryo-EM analysis (a), the F1965.47A residue that is important in MT1-activation (b), and the mutants to test Gi-selectivity (c) are shown. d, Cell surface expression levels of the MT1-constructs. Cells transiently expressing the FLAG epitope-tagged MT1-constructs were labeled with an anti-FLAG tag antibody, and then with an Alexa 488-conjugated secondary antibody. The fluorescent signals from individual cells were measured by a flow cytometer (See Methods). Data from each experiment are shown as dots with the mean value presented as a bar (n = 3–9). For the multiple comparison analysis, two-way ANOVA followed by the Dunnett’s test (WT (1:1) vs. mutant) was performed: ns, not significantly different, *, P < 0.05, *** P < 0.001. Source data for (ad) are available online.

Source data

Extended Data Fig. 4 Lateral pore and molecular dynamics (MD) simulations.

a,b, Structural comparison in the sagittal cross section (left panels), the lateral pore (top panels) and the transverse cross section (right panels) between MT1-Gi (light blue) and MT1 alone (crystal structure)14 (green, PDB 6ME2). The cross section and focused view on the lateral pore in MT1-Gi are shown. c, Molecular dynamics (MD) simulations in the presence (left, top) and absence (right, top) of ramelteon. The temporal changes in the distance of the Cα atom between Ala1584.56 and His1955.46 in the presence (left, top) and the absence (right, top) of ramelteon are shown. The transverse cross sections at the ligand-binding site at 200 ns and 400 ns for each simulation in the presence (left, below) and absence (right, below) of ramelteon.

Extended Data Fig. 5 Structural comparison on the G-protein interface.

Structural comparison of the G-protein interfaces among the GPCR-Gi and GPCR-Gs complexes. Structures are shown as ribbon models. Residues are shown as stick models. Hydrogen bonds and ionic interactions are indicated by black dashed lines. Focused views at the C-terminus of Gα (top panels) and the hydrophobic pocket of Gα (lower panels) are shown for CB1-Gi23 (a; cyan, PDB 6N4B), CB2-Gi27 (b; yellow, PDB 6KPF), NTS1-Gi C-state22 (c; green, PDB 6OS9), NTS1-Gi NC-state22 (d; brown, PDB 6OSA), D2R-Gi24 (e; yellow, PDB 6VMS), GPR52-miniGs41 (f; green, PDB 6LI3), β2AR-Gs43 (g; red, PDB 6NI3), and A2AR-miniGs42 (h; blue, PDB 6GDG).

Extended Data Fig. 6 Functional characterization of the MT1-signaling.

The NanoBiT-G-protein dissociation assays for concentration-response curves of G-protein dissociation signals are shown for MT1 (red) and mock (grey), using melatonin (top panels) and ramelteon (bottom panels). Symbols and error bars represent mean and s.e.m. of three independent experiments. Note that, in most data points, error bars are smaller than the size of the symbols and thus are not visualized in the panels. Source data are available online.

Source data

Extended Data Fig. 7 Cryo-EM density map and the structural model of the MT1-Gi complex.

Cryo-EM density maps and structural models are shown for selected regions: Ligand-binding pocket, Lateral gate, Toggle switch and PIF core, Na+ site and NPxxY motif, DRY motif, TM6 (lower part) and Gi-interface.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1 and 2.

Reporting Summary

Peer Review Information

Supplementary Dataset 1

Source data for Supplementary Fig. 3.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, H.H., Miyauchi, H., Inoue, A. et al. Cryo-EM structure of the human MT1–Gi signaling complex. Nat Struct Mol Biol 28, 694–701 (2021). https://doi.org/10.1038/s41594-021-00634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00634-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research