Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures

Abstract

3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2–50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart showing the correlative cryo-light/fluorescence and soft X-ray microscopy fiducialization workflow described in this study.
Fig. 2: Illustration of 2D (cryoSIM only and cryoSIM on X-ray mosaic) and 3D (cryoSXT only and cryoSIM with cryoSXT) correlation by using commercially available fiducial markers and organelle trackers.
Fig. 3: Decision-making scheme for use of fiducials for CLXT.
Fig. 4: Demonstration of correlation of fluorescence and X-ray data in U2OS cells by using green lipid droplets as fiducial markers.
Fig. 5: Optimization of 250-nm gold fiducial dispersion by using sonication and dispersal in different media.
Fig. 6: Examples of equipment used for sample support preparation, fiducial dispersal and sample vitrification through plunge freezing.
Fig. 7: Conventional cryo-microscopy setup, mapping software and sample evaluation.
Fig. 8: Representation of TRE values for different fiducial markers using eC-CLEM.
Fig. 9: Correlation of CLXT data with TetraSpeck microspheres.

Similar content being viewed by others

Data availability

Original imaging data referenced in the manuscript are deposited at the BioImage Archive (https://www.ebi.ac.uk/biostudies/BioImages) and EMPIAR (https://www.ebi.ac.uk/pdbe/emdb/empiar/). The accession numbers for the data deposited at EMPIAR are EMPIAR-10617, EMPIAR-10618, EMPIAR-10619, EMPIAR-10620, EMPIAR-10621, EMPIAR-10622 and EMPIAR-10624, and the accession numbers for the data deposited at the BioImage Archive are S-BIAD36, S-BIAD37, S-BIAD38, S-BIAD39, S-BIAD40, S-BIAD41 and S-BSST576.

References

  1. Peddie, C. J. & Schieber, N. L. The importance of sample processing for correlative imaging (or, rubbish in, rubbish out). In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 37–66 (John Wiley & Sons, 2020).

  2. Sochacki, K. A., Shtengel, G., van Engelenburg, S. B., Hess, H. F. & Taraska, J. W. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat. Methods 11, 305–308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Löschberger, A., Franke, C., Krohne, G., van de Linde, S. & Sauer, M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355 (2014).

    PubMed  Google Scholar 

  4. Müller-Reichert, T., Srayko, M., Hyman, A., O’Toole, E. T. & McDonald, K. Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. Methods Cell Biol. 79, 101–119 (2007).

    Article  PubMed  Google Scholar 

  5. Watari, N. & Herman, L. Correlative light and electron microscopy of bat islets of Langerhans in hibernating and nonhibernating states. Am. Zoolog. 5, 678 (1965).

    Google Scholar 

  6. Timmermans, F. J. & Otto, C. Contributed review: review of integrated correlative light and electron microscopy. Rev. Sci. Instrum. 86, 011501 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Jahn, K. A. et al. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43, 565–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Guérin, C. J., Liv, N. & Klumperman, J. It’s a small, small world. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 1–21 (John Wiley & Sons, 2020).

  10. Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N. & Lickfeld, K. G. Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155, 381–390 (1983).

  11. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    Article  PubMed  Google Scholar 

  12. Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., McIntosh, J. R. & Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109 (2007).

    Article  PubMed  Google Scholar 

  13. Bharat, T. A. M. & Kukulski, W. Cryo-correlative light and electron microscopy: toward in situ instructional biology. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 137–153 (John Wiley & Sons, 2020).

  14. Hampton, C. M. et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 12, 150–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lučić, V., Rigort, A. & Baumeister, W. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202, 407–419 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016).

    Article  PubMed  Google Scholar 

  19. Schneider, G. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75, 85–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Schneider, G. et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7, 985–987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Groen, J., Conesa, J. J., Valcárcel, R. & Pereiro, E. The cellular landscape by cryo soft X-ray tomography. Biophys. Rev. 11, 611–619 (2019).

    Article  PubMed Central  Google Scholar 

  22. Kounatidis, I. et al. 3D correlative cryo-structured illumination fluorescence and soft x-ray microscopy elucidates reovirus intracellular release pathway. Cell 182, 1–16 (2020).

    Article  Google Scholar 

  23. Le Gros, M. A. et al. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source. J. Synchrotron Radiat. 21, 1370–1377 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sorrentino, A. et al. MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging. J. Synchrotron Radiat. 22, 1112–1117 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Balint, S. et al. Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science 368, 897–901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Phillips, M. et al. CryoSIM: super resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultra-structural imaging. Optica 7, 802–812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaufmann, R., Hagen, C. & Grünewald, K. Super-resolution fluorescence microscopy of cryo-immobilized samples. In European Microscopy Congress 2016: Proceedings 1017–1017. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.6928 (2016).

  28. Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaufmann, R., Hagen, C. & Grünewald, K. Fluorescence cryo-microscopy: current challenges and prospects. Curr. Opin. Chem. Biol. 20, 86–91 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duke, E. M. H. et al. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 143, 77–87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fokkema, J. et al. Fluorescently labelled silica coated gold nanoparticles as fiducial markers for correlative light and electron microscopy. Sci. Rep. 8, 1–10 (2018).

    Article  CAS  Google Scholar 

  32. Geissinger, H. D. A precise stage arrangement for correlative microscopy for specimens mounted on glass slides, stubs or EM grids. J. Microsc. 100, 113–117 (1974).

    Article  Google Scholar 

  33. Su, Y. et al. Multi-dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy. Biophys. Rev. 2, 121–135 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lakowicz, J. R. Fluorophores. In Principles of Fluorescence Spectroscopy. 3rd edn, 63–95 (Springer, 2006).

  35. Lavis, L. D. & Raines, R. T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson, K., Nilsson, T. & Fernandez-Rodriguez, J. Challenges for CLEM from a light microscopy perspective. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 23–35 (John Wiley & Sons, 2020).

  37. Paul-Gilloteaux, P. & Schorb, M. Correlating data from imaging modalities. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 191–210 (John Wiley & Sons, 2020).

  38. Pereiro, E., Chichón, F. J. & Carrascosa, J. L. Correlative cryo soft X-ray imaging. In Correlative Imaging (eds. Verkade, P. & Collinson, L.) 155–169 (John Wiley & Sons, 2020).

  39. Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protoc. 9, 586–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Pereiro, E., Nicolás, J., Ferrer, S. & Howells, M. R. A soft X-ray beamline for transmission X-ray microscopy at ALBA. J. Synchrotron Radiat. 16, 505–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Harkiolaki, M. et al. Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg. Top. Life Sci. 2, 81–92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carrascosa, J. L. et al. Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. J. Struct. Biol. 168, 234–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Pérez-Berná, A. J. et al. Structural changes in cells imaged by soft X-ray cryo-tomography during hepatitis C virus infection. ACS Nano 10, 6597–6611 (2016).

    Article  PubMed  Google Scholar 

  45. Spink, M. C. et al. Correlation of cryo soft X-ray tomography with cryo fluorescence microscopy to characterise cellular organelles at beamline B24, Diamond Light Source. Microsc. Microanal. 24, 374–375 (2018).

    Article  Google Scholar 

  46. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

    Google Scholar 

  47. Kerker, M. The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 2013).

  48. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer Science & Business Media, 2013).

  49. Papavassiliou, G. C. Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185–271 (1979).

    Article  CAS  Google Scholar 

  50. Weiner, A. et al. Vitrification of thick samples for soft X-ray cryo-tomography by high pressure freezing. J. Struct. Biol. 181, 77–81 (2013).

    Article  PubMed  Google Scholar 

  51. Gal, A. et al. Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles. Proc. Natl Acad. Sci. USA 115, 11000–11005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conesa, J. J. et al. Unambiguous intracellular localization and quantification of a potent iridium anticancer compound by correlative 3D cryo X-ray imaging. Angew. Chem. Int. Ed. Engl. 59, 1270–1278 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ando, T. et al. The 2018 correlative microscopy techniques roadmap. J. Phys. D Appl. Phys. 51, 443001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arnold, J. et al. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110, 860–869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kukulski, W. et al. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192, 111–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. G. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503–513 (2015).

    Article  PubMed  Google Scholar 

  57. Varsano, N. et al. Development of correlative cryo-soft X-ray tomography and stochastic reconstruction microscopy. A study of cholesterol crystal early formation in cells. J. Am. Chem. Soc. 138, 14931–14940 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hagen, C. et al. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells. Ultramicroscopy 146, 46–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. J. Cell Sci. 128, 2795–2804 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. McDermott, G., Le Gros, M. A., Knoechel, C. G., Uchida, M. & Larabell, C. A. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol. 19, 587–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kapishnikov, S. et al. Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci. Rep. 7, 7610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smith, E. A. et al. Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys. J. 107, 1988–1996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Hest, J. J. Ha et al. Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy. J. Microsc. 274, 13–22 (2019).

    Article  Google Scholar 

  64. Aslan, K., Wu, M., Lakowicz, J. R. & Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129, 1524–1525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aslan, K. & Geddes, C. D. Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. In Metal-Enhanced Fluorescence (ed. Geddes, C. D.) 1–23 (John Wiley & Sons, 2010).

  66. Lee, D., Lee, J., Song, J., Jen, M. & Pang, Y. Homogeneous silver colloidal substrates optimal for metal-enhanced fluorescence. Phys. Chem. Chem. Phys. 21, 11599–11607 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Hodgson, L., Verkade, P. & Yamauchi, Y. Correlative light and electron microscopy of influenza virus entry and budding. Influenza Virus (ed. Yamauchi, Y.) 237–260 (Humana Press, 2018).

  68. McGorty, R., Kamiyama, D. & Huang, B. Active microscope stabilization in three dimensions using image correlation. Opt. Nanoscopy https://doi.org/10.1186/2192-2853-2-3 (2013).

  69. Metskas, L. A. & Briggs, J. A. G. Fluorescence-based detection of membrane fusion state on a cryo-EM grid using correlated cryo-fluorescence and cryo-electron microscopy. Microsc. Microanal. 25, 942–949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Walling, M. A., Novak, J. A. & Shepard, J. R. E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci. 10, 441–491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wegner, K. D. & Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hemelaar, S. R. et al. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  73. Schade, A. E. et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 111, 1366–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trickett, A. & Kwan, Y. L. T cell stimulation and expansion using anti-CD3/CD28 beads. J. Immunol. Methods 275, 251–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14, 102–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Bogovic, J. A., Hanslovsky, P., Wong, A. & Saalfeld, S. Robust registration of calcium images by learned contrast synthesis. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) 1123–1126 (IEEE, 2016).

  77. Miles, B. T. et al. Direct evidence of lack of colocalisation of fluorescently labelled gold labels used in correlative light electron microscopy. Sci. Rep. 7, 44666 (2017).

  78. Oorschot, V., de Wit, H., Annaert, W. G. & Klumperman, J. A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J. Histochem. Cytochem. 50, 1067–1080 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schellenberger, P. et al. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pezzi, H. M., Niles, D. J., Schehr, J. L., Beebe, D. J. & Lang, J. M. Integration of magnetic bead-based cell selection into complex isolations. ACS Omega 3, 3908–3917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uludag, H., Ubeda, A. & Ansari, A. At the intersection of biomaterials and gene therapy: progress in non-viral delivery of nucleic acids. Front. Bioeng. Biotechnol. 7, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Booth, D. G., Beckett, A. J., Prior, I. A. & Meijer, D. SuperCLEM: an accessible correlative light and electron microscopy approach for investigation of neurons and glia in vitro. Biol. Open 8, bio042085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Telling, N. D. et al. Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem. Biol. 24, 1205–1215.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Jamme, F. et al. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. J. Synchrotron Radiat. 27, 772–778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahn, S., Jung, S. Y. & Lee, S. J. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules 18, 5858–5890 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Niclis, J. C. et al. Three-dimensional imaging of human stem cells using soft X-ray tomography. J. R. Soc. Interface 12, 20150252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Conesa, J. J. et al. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography. Sci. Rep. 6, 22354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsuda, A., Schermelleh, L., Hirano, Y., Haraguchi, T. & Hiraoka, Y. Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy. Sci. Rep. 8, 7583 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. de Chaumont, F. et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9, 690–696 (2012).

    Article  PubMed  Google Scholar 

  94. Luengo, I. et al. SuRVoS: Super-Region Volume Segmentation workbench. J. Struct. Biol. 198, 43–53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Bouterfa, H. et al. Expression of different extracellular matrix components in human brain tumor and melanoma cells in respect to variant culture conditions. J. Neurooncol. 44, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Vaz, F. et al. Accessibility to peptidoglycan is important for the recognition of gram-positive bacteria in Drosophila. Cell Rep. 27, 2480–2492.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vizcardo, R. et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Peng, T. et al. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc. Natl Acad. Sci. USA 107, 2944–2949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Farmer, B. C., Kluemper, J. & Johnson, L. A. Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation. Cells 8, 182 (2019).

  101. Chazotte, B. Labeling lysosomes in live cells with LysoTracker. Cold Spring Harb. Protoc. 2011, pdb.prot5571 (2011).

    Article  PubMed  Google Scholar 

  102. Bianchini, P. et al. Live imaging of mammalian retina: rod outer segments are stained by conventional mitochondrial dyes. J. Biomed. Opt. 13, 054017 (2008).

    Article  PubMed  Google Scholar 

  103. Awasthi, S., Madhusoodhanan, R. & Wolf, R. Surfactant protein-A and toll-like receptor-4 modulate immune functions of preterm baboon lung dendritic cell precursor cells. Cell. Immunol. 268, 87–96 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Drulyte, I. et al. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr. D Struct. Biol. 74, 560–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P. & Ranson, N. A. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100, 3–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grassucci, R. A., Taylor, D. J. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat. Protoc. 2, 3239–3246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hiroyasu, A., DeWitt, D. C. & Goodman, A. G. Extraction of hemocytes from Drosophila melanogaster larvae for microbial infection and analysis. J. Vis. Exp. 135, 57077 (2018).

    Google Scholar 

  108. Dobro, M. J., Melanson, L. A., Jensen, G. J. & McDowall, A. W. Plunge freezing for electron cryomicroscopy. In Cryo-EM, Part A: Sample Preparation and Data Collection Vol. 481 (ed. Jensen, G. J.) 63–82 (Academic Press, 2010).

  109. Noble, A. J. et al. Routine single particle CryoEM sample and grid characterization by tomography. eLife 7, e34257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Paul-Gilloteaux for her invaluable help with eC-CLEM and previous and current members of the B24 and BL09 teams, with special thanks to M. Spink for instrumentation support and A. Taylor and A. Prescott for technical support. We also thank A. Clayton for suggestions in trying new reagents and M. Dumoux for help with laboratory techniques, advice and training. We acknowledge the support of Micron in the development, application and maintenance of the B24 super-resolution facility. We also thank A. Aires Trapote (CIC BiomaGUNE, San Sebastian, Spain), A. V. Villar, A. R. Palanca, D. Maestro Lavín (IBBTEC, Santander, Spain) and J. Conesa (ALBA and CNB-CSIC). This work was carried out with the support of the Diamond Light Source, instrument B24 (proposals MX18737, MX20321, BI22274, BI23046 and BI25162). We acknowledge ALBA for allocated MISTRAL beamtimes 2018093099 and 2019093739. This project has received funding from the European Commission Horizon 2020 iNEXT-Discovery project and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement 75439 and Wellcome awards 091911/Z/11/Z and 107457/Z/15/Z. S.B. is supported by ERC AdG670930.

Author information

Authors and Affiliations

Authors

Contributions

C.A.O. coordinated and produced the manuscript with the help of I.K., J.G., E.P. and M.H. C.A.O., I.K., J.G., A.L.C., K.L.N. and S.B. provided data, protocols and critical evaluation of results. M.A.K. and T.M.F. provided support with software and protocol development. I.M.D. supported cryoSIM operations and optimization. E.P. and M.H. managed beamline resources, supervised experiments and evaluated applicability and user-friendliness.

Corresponding author

Correspondence to Maria Harkiolaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Gerd Schneider and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kounatidis, I. et al. Cell 182, 1–16 (2020): https://doi.org/10.1016/j.cell.2020.05.051

Phillips, M. et al. Optica 7, 802–812 (2020): https://doi.org/10.1364/OPTICA.393203

Harkiolaki, M. et al. Emerg. Top. Life Sci. 2, 81–92 (2018): https://doi.org/10.1042/ETLS20170086

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figs. 1–5 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okolo, C.A., Kounatidis, I., Groen, J. et al. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 16, 2851–2885 (2021). https://doi.org/10.1038/s41596-021-00522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00522-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing