Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards better representation of organic agriculture in life cycle assessment

Abstract

The environmental effects of agriculture and food are much discussed, with competing claims concerning the impacts of conventional and organic farming. Life cycle assessment (LCA) is the method most widely used to assess environmental impacts of agricultural products. Current LCA methodology and studies tend to favour high-input intensive agricultural systems and misrepresent less intensive agroecological systems such as organic agriculture. LCA assesses agroecological systems inadequately for three reasons: (1) a lack of operational indicators for three key environmental issues; (2) a narrow perspective on functions of agricultural systems; and (3) inconsistent modelling of indirect effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual number of peer-reviewed English-language articles published from 1990–2018 using LCA to assess agricultural and food systems.
Fig. 2: Agricultural systems and landscapes can be classified along a continuum from high-input intensive to agroecological.

Jacques Baudry (a); Valérie Viaud (b)

Fig. 3: LCA and ecosystem services conceptual frameworks.

Similar content being viewed by others

References

  1. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  2. Eyhorn, J. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).

    Article  Google Scholar 

  3. European Commission - Joint Research Centre International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed Guidance (Publications Office of the European Union, 2010).

  4. Bauman, H. & Tillman A. M. The Hitchhiker’s Guide to LCA (Studentlitteratur AB, 2004).

  5. The Environmental Footprint Pilots (European Commission, accessed 24 October 2019); https://go.nature.com/2SQv2fo

  6. Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    Article  CAS  Google Scholar 

  7. Huang, J. et al. Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J. Environ. Manage. 149, 138–147 (2015).

    Article  Google Scholar 

  8. Burkhard, B., Crossman, N., Nedkov, S., Petz, K. & Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 4, 1–3 (2013).

    Article  Google Scholar 

  9. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security (HLPE, 2019).

  10. Paull, J. From France to the world: The International Federation of Organic Agriculture Movements (IFOAM). J. Soc. Res. Policy 1, 93–102 (2010).

    Google Scholar 

  11. Basset-Mens, C., Ledgard, S. & Boyes, M. Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol. Econ. 68, 1615–1625 (2009).

    Article  Google Scholar 

  12. Haines-Young, R., Potschin-Young, M. & Czúcz, B. Report on the Use of CICES to Identify and Characterise the Biophysical, Social and Monetary Dimensions of ES Assessments Deliverable D4.2, EU Horizon 2020 ESMERALDA Project (European Commission, 2018).

  13. Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? – A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).

    Article  CAS  Google Scholar 

  14. Meier, M. S. et al. Environmental impacts of organic and conventional agricultural products – are differences captured by life cycle assessment? J. Environ. Manage. 149, 193–207 (2015).

    Article  Google Scholar 

  15. Schleenbecker, R. & Hamm, U. Consumers’ perception of organic product characteristics. A review. Appetite 71, 420–429 (2013).

    Article  Google Scholar 

  16. Baranski, M. et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Brit. J. Nutr. 112, 794–811 (2014).

    Article  CAS  Google Scholar 

  17. Hyland, C. Organic diet intervention significantly reduces urinary pesticide levels in U.S. children and adults. Environ. Res. 171, 568–575 (2019).

    Article  CAS  Google Scholar 

  18. Sundrum, A. Organic livestock farming. A critical review. Livest. Prod. Sci. 67, 207–215 (2001).

    Article  Google Scholar 

  19. Scherer, L., Tomasik, B., Rueda, O. & Pfister, S. Framework for integrating animal welfare into life cycle sustainability assessment. Int. J. Life Cycle Assess. 23, 1476–1490 (2018).

    Article  Google Scholar 

  20. Climate Change and land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems (IPCC, 2019).

  21. Vidal Legaz, B. et al. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J. Clean. Prod. 140, 502–515 (2017).

    Article  Google Scholar 

  22. De Laurentiis, V. et al. Soil quality index: exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 215, 63–74 (2019).

    Article  Google Scholar 

  23. Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).

    Article  CAS  Google Scholar 

  24. Dijkman, T. J., Birkved, M. & Hauschild, M. Z. PestLCI 2.0: a second generation model for estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 17, 973–986 (2012).

    Article  CAS  Google Scholar 

  25. Silva, V. et al. Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).

    Article  CAS  Google Scholar 

  26. Diaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services – Unedited Advance Version (IPBES, 2019).

  27. Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  28. McClelland, S. C., Arndt, C., Gordon, D. R. & Thoma, G. Type and number of environmental impact categories used in livestock life cycle assessment: a systematic review. Livest. Sci. 209, 39–45 (2018).

    Article  Google Scholar 

  29. Khatri, P. & Jain, S. Environmental life cycle assessment of edible oils: a review of current knowledge and future research challenges. J. Clean. Prod. 152, 63–76 (2017).

    Article  Google Scholar 

  30. Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    Article  Google Scholar 

  31. Jolliet, O. et al. Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 23, 2189–2207 (2018).

    Article  CAS  Google Scholar 

  32. Chaudhary, A. & Brooks, T. M. Land use intensity-specific global characterization factors to assess product biodiversity footprints. Environ. Sci. Technol. 52, 5094–5104 (2018).

    Article  CAS  Google Scholar 

  33. Knudsen, M. T. et al. Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the ‘Temperate Broadleaf and Mixed Forest’ biome. Sci. Total Environ. 580, 358–366 (2017).

    Article  CAS  Google Scholar 

  34. Pesticide Indicators (FAO, accessed 5 February 2019); www.fao.org/faostat/en/#data/EP/visualize

  35. Sabarwal, A., Kumar, K. & Singh, R. P. Hazardous effects of chemical pesticides on human health – cancer and other associated disorders (review). Environ. Toxicol. Phar. 63, 103–114 (2018).

    Article  CAS  Google Scholar 

  36. The Public Health Impacts of Chemicals: Knowns and Unknowns WHO/FWC/PHE/EPE/16.01 (World Health Organization, 2016).

  37. Avila-Vazquez, M., Difilipo, F. S., Mac Lean, B., Maturano, E. & Etchegoyen, A. Environmental exposure to glyphosate and reproductive health impacts in agricultural population of Argentina. J. Environ. Prot. 9, 241–253 (2018).

    Article  Google Scholar 

  38. Casado, J. et al. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci. Total Environ. 670, 1204–1225 (2019).

    Article  CAS  Google Scholar 

  39. GEUS Forekomst av N,N-dimethylsulfamide (DMS) og 1,2,4-triazol i de almene vandværkers boringskontrol GEUS Jnr:014-250 (De Nationelle Geologiske Undersøgelser fir Danmark og Grønland, 2019).

  40. Myers, J. P. et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ. Health 15, 19 (2016).

    Article  CAS  Google Scholar 

  41. Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).

    Article  Google Scholar 

  42. McKinlay, R., Plant, J. A., Bell, J. N. B. & Voulvoulis, N. Endocrine disrupting pesticides: implications for risk assessment. Environ. Int. 34, 168–183 (2008).

    Article  CAS  Google Scholar 

  43. Hertz-Piciotto, I. et al. Organophosphate exposures during pregnancy and child neurodevelopment: recommendations for essential policy reforms. PLoS Med. 15, e1002671 (2018).

    Article  Google Scholar 

  44. Tukker, A. Risk analysis, life cycle assessment—the common challenge of dealing with the precautionary frame (based on the toxicity controversy in Sweden and the Netherlands). Risk Anal. 22, 821–832 (2002).

    Article  Google Scholar 

  45. Zamagni, A., Guinée, J., Heijungs, R., Masoni, P. & Raggi, A. Lights and shadows in consequential LCA. Int. J. Life Cycle Assess. 17, 904–918 (2012).

    Article  Google Scholar 

  46. Yang, Y. & Heijungs, R. On the use of different models for consequential life cycle assessment. Int. J. Life Cycle Assess. 23, 751–758 (2017).

    Article  Google Scholar 

  47. Schmidt, J. H., Weidema, B. P. & Brandão, M. A framework for modelling indirect land use changes in life cycle assessment. J. Clean. Prod. 99, 230–238 (2015).

    Article  Google Scholar 

  48. Mason Earles, J. & Halog, A. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16, 445–453 (2011).

    Article  Google Scholar 

  49. Finkbeiner, M. Indirect land use change - help beyond the hype? Biomass Bioenerg. 62, 218–221 (2014).

    Article  Google Scholar 

  50. Parra Paitan, C. & Verburg, P. H. Methods to assess the impacts and indirect land use change caused by telecoupled agricultural supply chains: a review. Sustainability 11, 1162 (2019).

    Article  Google Scholar 

  51. Smith, L. G., Kirk, G. J., Jones, P. J. & Williams, A. G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 10, 4641 (2019).

    Article  CAS  Google Scholar 

  52. Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    Article  CAS  Google Scholar 

  53. Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

    Article  Google Scholar 

  54. Barretto, A., Berndes, G., Sparovek, G. & Wirsenius, S. Agricultural intensification in Brazil and its effects on land use patterns: an analysis of the 1975–2006 period. Glob. Change Biol. 19, 1804–1815 (2013).

    Article  Google Scholar 

  55. Baudry, J. et al. Dietary intakes and diet quality according to levels of organic food consumption by French adults: cross-sectional findings from the NutriNet-Santé Cohort Study. Public Health Nutr. 20, 638–648 (2017).

    Article  Google Scholar 

  56. Font Vivanco, D. & van der Voet, E. The rebound effect through industrial ecology’s eyes: a review of LCA-based studies. Int. J. Life Cycle Assess. 19, 1933–1947 (2014).

    Article  Google Scholar 

  57. Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

    Google Scholar 

  58. De Laurentiis, V. et al. Soil quality index: exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 215, 63–74 (2019).

    Article  Google Scholar 

  59. Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    Article  CAS  Google Scholar 

  60. Alejandre, E. M., van Bodegom, P. M. & Guinée, J. B. Towards an optimal coverage of ecosystem services in LCA. J. Clean. Prod. 231, 714–722 (2019).

    Article  Google Scholar 

  61. Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    Article  CAS  Google Scholar 

  62. Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    Article  CAS  Google Scholar 

  63. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur.-Agr. 3, 92–98 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Berndes, M. Corson and R. Clift for helpful comments on the manuscript. We thank S. Bitteur and M. Delabuis for help with graphics and J. Baudry and V. Viaud for landscape photographs. Thanks to H. van Nispen van Sevenaer for inspiration.

Author information

Authors and Affiliations

Authors

Contributions

H.M.v.d.W. and M.T.K. had the initial idea; H.M.v.d.W., M.T.K. and C.C. contributed ideas and wrote the Perspective.

Corresponding author

Correspondence to Hayo M. G. van der Werf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Werf, H.M.G., Knudsen, M.T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat Sustain 3, 419–425 (2020). https://doi.org/10.1038/s41893-020-0489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-0489-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene