Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Urban conservation gardening in the decade of restoration

Abstract

Global commitments and policy interventions for conservation have failed to halt widespread declines in plant biodiversity, highlighting an urgent need to engage novel approaches and actors. Here we propose that urban conservation gardening, namely the cultivation of declining native plant species in public and private green spaces, can be one such approach. We identify policy and complementary social mechanisms to promote conservation gardening and reform the existing horticultural market into an innovative nature-protection instrument. Conservation gardening can be an economically viable and participatory measure that complements traditional approaches to plant conservation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A species’ niche position for nutrients is positively associated with its occupancy across Germany.
Fig. 2: Cultivation has a positive impact on the occupancy trend of both native plants and neophytes.
Fig. 3: Urban green spaces can increase and better connect the area for conservation activities.
Fig. 4: Many threatened native plant species are already available for purchase online.
Fig. 5: A tiered approach for selecting appropriate declining native species.

Similar content being viewed by others

Data availability

Data used for Figs. 1 and 2 are taken from ref. 25 and sci.muni.cz/botany/juice/ELLENB.TXT. Source data are provided with this paper.

References

  1. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Article  Google Scholar 

  2. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  3. Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).

    Article  Google Scholar 

  4. Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    Article  CAS  Google Scholar 

  5. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  CAS  Google Scholar 

  6. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    Article  CAS  Google Scholar 

  7. Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).

    Article  Google Scholar 

  8. McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).

    Article  Google Scholar 

  9. Rosenzweig, M. L. Reconciliation ecology and the future of species diversity. Oryx 37, 194–205 (2003).

    Article  Google Scholar 

  10. Dunn, R. R., Gavin, M. C., Sanchez, M. C. & Solomon, J. N. The pigeon paradox: dependence of global conservation on urban nature. Conserv. Biol. 20, 1814–1816 (2006).

    Article  Google Scholar 

  11. Callaghan, C. T. et al. How to build a biodiverse city: environmental determinants of bird diversity within and among 1581 cities. Biodivers. Conserv. 30, 217–234 (2021).

    Article  Google Scholar 

  12. Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article  Google Scholar 

  13. Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Article  Google Scholar 

  14. Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).

    Article  Google Scholar 

  15. Maller, C., Mumaw, L. & Cooke, B. in Rewilding (eds Pettorelli, N. et al.) Ch. 9 (Cambridge, Univ. Press, 2019).

  16. Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).

    Article  Google Scholar 

  17. Prévot, A.-C., Cheval, H., Raymond, R. & Cosquer, A. Routine experiences of nature in cities can increase personal commitment toward biodiversity conservation. Biol. Conserv. 226, 1–8 (2018).

    Article  Google Scholar 

  18. Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).

    Article  Google Scholar 

  19. van Heezik, Y., Freeman, C., Davidson, K. & Lewis, B. Uptake and engagement of activities to promote native species in private gardens. Environ. Manag. 66, 42–55 (2020).

    Article  Google Scholar 

  20. Jorgensen, A. & Keenan, R. Urban Wildscapes (Routledge, 2012).

  21. Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).

    Article  Google Scholar 

  22. Tallamy, D. W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants (Timber Press, 2007).

  23. Burghardt, K. T., Tallamy, D. W. & Gregory Shriver, W. Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv. Biol. 23, 219–224 (2009).

    Article  Google Scholar 

  24. Kraljevic, A. & Mitlacher, G. Barometer on CBD’s Target for International Resource Mobilization (WWF, 2020).

  25. Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).

    Article  CAS  Google Scholar 

  26. Lughadha, E. N. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).

    Article  Google Scholar 

  27. Metzing, D., Hofbauer, N., Ludwig, G. & Matzke-Hajek, G. Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands: Pflanzen/Redaktion: Detlev Metzing, Natalie Hofbauer, Gerhard Ludwig und Günter Matzke-Hajek (Bundesamt für Naturschutz, 2018).

  28. Kalusová, V. et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA 114, 13756–13761 (2017).

    Article  CAS  Google Scholar 

  29. Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).

    Article  Google Scholar 

  30. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Article  Google Scholar 

  31. Lundholm, J. T. & Richardson, P. J. Mini-Review: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975 (2010).

    Article  Google Scholar 

  32. Ellenberg, H. Gefahrdung wildlebender Pflanzenarten in der Bundesrepublik Deutschland, Versuch einer okologischen Betrachtung. Forstarchiv 57, 127–133 (1983).

    Google Scholar 

  33. Deeb, M. et al. Using constructed soils for green infrastructure—challenges and limitations. Soil 6, 413–434 (2020).

    Article  CAS  Google Scholar 

  34. BuGG-Marktreport Gebäudegrün 2020 Dach-, Fassaden-und Innenraumbegrünung Deutschland Neu begrünte Flächen Bestand und Potenziale Kommunale Förderung (BuGG, 2020).

  35. Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States: most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. Bioscience 51, 103–113 (2001).

    Article  Google Scholar 

  36. der Lippe, M. & Kowarik, I. Do cities export biodiversity? Traffic as dispersal vector across urban—rural gradients. Divers. Distrib. 14, 18–25 (2008).

    Article  Google Scholar 

  37. Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    Article  CAS  Google Scholar 

  38. Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).

    Article  Google Scholar 

  39. Sharrock, S. Plant Conservation Report 2020: A Review of Progress Towards the Global Strategy for Plant Conservation 2011–2020 CBD Technical Series No. 95 (Convention on Biological Diversity, 2020).

  40. Ismail, S. A., Pouteau, R., van Kleunen, M., Maurel, N. & Kueffer, C. Horticultural plant use as a so-far neglected pillar of ex situ conservation. Conserv. Lett. 14, e12825 (2021).

    Article  Google Scholar 

  41. Wüstemann, H., Kalisch, D. & Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 164, 124–131 (2017).

    Article  Google Scholar 

  42. Kleingärten im Wandel—Innovationen für verdichtete Räume (BBSR, 2018).

  43. Rudd, H., Vala, J. & Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor. Ecol. 10, 368–375 (2002).

    Article  Google Scholar 

  44. Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).

    Article  Google Scholar 

  45. du Toit, M. J., Shackleton, C. M., Cilliers, S. S. & Davoren, E. in Urban Ecology in the Global South (eds Shackleton, C. M. et al.) 433–461 (Springer, 2021).

  46. Sawyer, J. Saving threatened native plant species in cities—from traffic islands to real islands. In Greening the City: Bringing Biodiversity Back Into the Urban Environment: Proc. (ed Dawson, M. I.) 111–117 (Royal New Zealand Institute of Horticulture, 2005).

  47. Webb, E. L. A Guide to the Native Ornamental Trees of American Samoa (National Univ. Singapore, 2011).

  48. Pan, K. et al. Urban green spaces as potential habitats for introducing a native endangered plant, Calycanthus chinensis. Urban For. Urban Green. 46, 126444 (2019).

    Article  Google Scholar 

  49. Gardening sales value worldwide from 2015 to 2020, with a forecast up to 2024. Statista statista.com/statistics/1220222/global-gardening-sales-value/ (2021).

  50. Warenstromanalyse 2018: Blumen, Zierpflanzen & Gehölze (AMI, 2020).

  51. Nature Awareness Study (Bundesamt für Naturschutz (BfN), 2019).

  52. Abbandonato, H., Pedrini, S., Pritchard, H. W., De Vitis, M. & Bonomi, C. Native seed trade of herbaceous species for restoration: a European policy perspective with global implications. Restor. Ecol. 26, 820–826 (2018).

    Article  Google Scholar 

  53. Hancock, N., Gibson-Roy, P., Driver, M. & Broadhurst, L. The Australian Native Seed Survey Report (Australian Network for Plant Conservation, 2020).

  54. Wilkinson, D. M. Is local provenance important in habitat creation? J. Appl. Ecol. 38, 1371–1373 (2001).

    Article  Google Scholar 

  55. Pedrini, S. & Dixon, K. W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 28, S286–S303 (2020).

    Google Scholar 

  56. De Vitis, M. et al. The European native seed industry: characterization and perspectives in grassland restoration. Sustainability 9, 1682 (2017).

    Article  Google Scholar 

  57. Westwood, M., Cavender, N., Meyer, A. & Smith, P. Botanic garden solutions to the plant extinction crisis. Plants People Planet 3, 22–32 (2021).

    Article  Google Scholar 

  58. Mounce, R., Smith, P. & Brockington, S. Ex situ conservation of plant diversity in the world’s botanic gardens. Nat. Plants 3, 795–802 (2017).

    Article  Google Scholar 

  59. Pedrini, S. et al. Collection and production of native seeds for ecological restoration. Restor. Ecol. 28, S228–S238 (2020).

    Google Scholar 

  60. Groves, R. H. Can Australian native plants be weeds. Plant Prot. Q. 16, 114–117 (2001).

    Google Scholar 

  61. Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographic Scheme for Recording Plant Distributions 2nd edn (Hunt Institute for Botanical Documentation, 2001).

  62. Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).

    Article  CAS  Google Scholar 

  63. Mumaw, L. & Bekessy, S. Wildlife gardening for collaborative public—private biodiversity conservation. Australas. J. Environ. Manag. 24, 242–260 (2017).

    Article  Google Scholar 

  64. Mumaw, L. Transforming urban gardeners into land stewards. J. Environ. Psychol. 52, 92–103 (2017).

    Article  Google Scholar 

  65. Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313 (2020).

    Article  Google Scholar 

  66. Ladouceur, E. et al. Native seed supply and the restoration species pool. Conserv. Lett. 11, e12381 (2018).

    Article  Google Scholar 

  67. Hyvärinen, M.-T. Rubus humulifolius rescued by narrowest possible margin, conserved ex situ, and reintroduced in the wild. J. Nat. Conserv. 55, 125819 (2020).

    Article  Google Scholar 

  68. Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet https://doi.org/10.1002/ppp3.10251 (2022).

  69. Brodie, J. F. et al. Global policy for assisted colonization of species. Science 372, 456–458 (2021).

    Article  CAS  Google Scholar 

  70. Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 27, S1–S46 (2019).

    Article  Google Scholar 

  71. Bower, A. D., Clair, J. B. S. & Erickson, V. Generalized provisional seed zones for native plants. Ecol. Appl. 24, 913–919 (2014).

    Article  Google Scholar 

  72. Goddard, M. A., Dougill, A. J. & Benton, T. G. Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecol. Econ. 86, 258–273 (2013).

    Article  Google Scholar 

  73. Ignatieva, M. & Ahrné, K. Biodiverse green infrastructure for the 21st century: from “green desert” of lawns to biophilic cities. J. Archit. Urban. 37, 1–9 (2013).

    Article  Google Scholar 

  74. van Heezik, Y. M., Dickinson, K. J. M. & Freeman, C. Closing the gap: communicating to change gardening practices in support of native biodiversity in urban private gardens. Ecol. Soc. 17, 34 (2012).

    Google Scholar 

  75. Shaw, A. E. & Miller, K. K. Preaching to the converted? Designing wildlife gardening programs to engage the unengaged. Appl. Environ. Educ. Commun. 15, 214–224 (2016).

    Article  Google Scholar 

  76. Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).

    Article  Google Scholar 

  77. Niemiec, R., Jones, M. S., Lischka, S. & Champine, V. Efficacy-based and normative interventions for facilitating the diffusion of conservation behavior through social networks. Conserv. Biol. 35, 1073–1085 (2021).

    Article  Google Scholar 

  78. Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).

    Article  Google Scholar 

  79. Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).

    Article  Google Scholar 

  80. Nassauer, J. I. Messy ecosystems, orderly frames. Landsc. J. 14, 161–170 (1995).

    Article  Google Scholar 

  81. Cavender, N., Smith, P. & Marfleet, K. BGCI Technical Review: The Role of Botanic Gardens in Urban Greening and Conserving Urban Biodiversity (BGCI, 2019).

Download references

Acknowledgements

We acknowledge funding of iDiv via the German Research Foundation (DFG FZT 118). C.T.C. was supported by a Marie Sklodowska-Curie Individual Fellowship (number 891052). J.S. was supported by the project: TERRANOVA the European Landscape Learning Initiative, which has received funding from the European Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 813904. We also thank M. Schlatter for her valuable contributions at the beginning of the project and M. Hassler for kindly providing the photographs for Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

I.R.S. and J.S. devised the project and the main conceptual ideas with contributions from C.T.C., E.L., A.P., H.M.P. and J.N.M. J.S. and I.R.S. performed the analytical calculations. J.S., I.R.S. and E.L. produced figures. J.S. and I.R.S. wrote the manuscript with contributions from E.L., C.T.C., J.N.M., A.P. and H.M.P. I.R.S. supervised the project.

Corresponding authors

Correspondence to Josiane Segar or Ingmar R. Staude.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Robert McDonald, Laura Mumaw and Paul Smith for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2 and References.

Source data

Source Data Fig. 1

Occupancy and N values of species list.

Source Data Fig. 2

Trend, floristic and cultivation status of species list.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segar, J., Callaghan, C.T., Ladouceur, E. et al. Urban conservation gardening in the decade of restoration. Nat Sustain 5, 649–656 (2022). https://doi.org/10.1038/s41893-022-00882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00882-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing