Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effectiveness of protected areas influenced by socio-economic context

Abstract

Protected area (PA) performance is thought to depend on effective conservation management and favourable socio-economic context. However, increasing evidence of continued biodiversity decline within PAs raises the question of whether fundamental ecological and socio-economic constraints might actually affect PA effectiveness. Here we quantify how threats to biodiversity, socio-economic context and conservation efforts play out across 114 PAs in 25 European and African countries. We found that even in the presence of highly favourable socio-economic context and conservation efforts, it is not possible to completely offset the intensity of threats and prevent biodiversity decline. Projections show that halting biodiversity decline across the studied PA network may require at least a 35% increase in conservation efforts over a decade. However, as PAs approach zero biodiversity loss, even greater efforts and resources would be needed because of the principle of diminishing marginal returns. Our findings point to limited effectiveness of PAs and their management that might not be possible to address by simply increasing resources. Additionally, the adoption of core design principles of sustainable systems that take into account the social–ecological contexts of PAs could help overcome the observed hurdles of limited effectiveness and thus better integrate PAs into sustainable development efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of PAs included and their respective countries.
Fig. 2: Changing abundance of mammals and birds across the PA network.
Fig. 3: The influence of socio-economic context and conservation effort on threats to PAs.
Fig. 4: Interaction effects of predictors of biodiversity change across the PA network.

Similar content being viewed by others

Data availability

The full datasets generated as part of this study are not publicly available due to sensitivity and confidentiality of information but are available from the corresponding authors on reasonable request. However, the minimum datasets required for replicating and interpreting this study are available in the Supplementary Information.

Code availability

The R code used for data analyses in this study is available as supplementary information.

References

  1. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).

    Article  CAS  Google Scholar 

  2. IPBES Secretariat Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  3. Bruner, A. G., Gullison, R. E., Rice, R. E. & Fonseca, G. A. Bda Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    Article  CAS  Google Scholar 

  4. Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).

    Article  Google Scholar 

  5. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–293 (2012).

    Article  CAS  Google Scholar 

  6. Conference of the Parties, The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets, COP-10 Decision X/2 (CBD, 2010).

  7. Protected Planet Report 2018 (UNEP-WCMC IUCN & NGS, 2018).

  8. Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).

    Article  Google Scholar 

  9. Joppa, L. N., Bailie, J. E. M. & Robinson, J. G. Protected Areas: Are They Safeguarding Biodiversity?. (Wiley Blackwell, 2016).

    Book  Google Scholar 

  10. Rada, S. et al. Protected areas do not mitigate biodiversity declines: a case study on butterflies. Divers. Distrib. 25, 217–224 (2019).

    Article  Google Scholar 

  11. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    Article  Google Scholar 

  12. Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article  Google Scholar 

  13. Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33, 676–688 (2018).

    Article  Google Scholar 

  14. Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).

    Article  Google Scholar 

  15. Ferraro, P. J. & Pattanayak, S. K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4, 482–488 (2006).

    Article  CAS  Google Scholar 

  16. Polaina, E., González-Suárez, M. & Revilla, E. Socioeconomic correlates of global mammalian conservation status. Ecosphere 6, 1–34. (2015).

    Article  Google Scholar 

  17. Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Philos. Trans. R. Soc. Lond. Biol. Sci. 370, 20140270 (2015).

    Article  Google Scholar 

  18. Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).

    Article  CAS  Google Scholar 

  19. McGinnis, M. D. & Ostrom, E. Social-ecological system framework: initial changes and continuing challenges. Ecol. Soc. 19, 30 (2014).

    Article  Google Scholar 

  20. Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    Article  CAS  Google Scholar 

  21. Palomo, I. et al. Incorporating the social-ecological approach in protected areas in the anthropocene. BioScience 64, 181–191 (2014).

    Article  Google Scholar 

  22. Poteete, A. R., Janssen, M. A., & Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice (Princeton Univ. Press, 2010).

  23. Wilson, D. S., Ostrom, E. & Cox, M. E. Generalizing the core design principles for the efficacy of groups. J. Econ. Behav. Organ. 90, S21–S32 (2013).

    Article  Google Scholar 

  24. Tebet, G., Trimble, M. & Pereira Medeiros, R. Using Ostrom’s principles to assess institutional dynamics of conservation: lessons from a marine protected area in Brazil. Mar. Policy 88, 174–181 (2018).

    Article  Google Scholar 

  25. Ban, N. C. et al. Social and ecological effectiveness of large marine protected areas. Glob. Environ. Change 43, 82–91 (2017).

    Article  Google Scholar 

  26. Fleischman, F. D. et al. Governing large-scale social-ecological systems: lessons from five cases. Int. J. Commons 8, 428–456 (2014).

    Article  Google Scholar 

  27. Faff, R., Ho, Y. K., Lin, W. & Yap, C. M. Diminishing marginal returns from R&D investment: evidence from manufacturing firms. Appl. Econ. 45, 611–622 (2013).

    Article  Google Scholar 

  28. Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    Article  CAS  Google Scholar 

  29. Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).

    Article  Google Scholar 

  30. Irwin, K., Mulder, L. & Simpson, B. The detrimental effects of sanctions on intragroup trust: comparing punishments and rewards. Soc. Psychol. Q. 77, 253–272 (2014).

    Article  Google Scholar 

  31. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225. (2015).

    Article  Google Scholar 

  32. Urban, M. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  33. Lovett, G. M. et al. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann. N. Y. Acad. Sci. 1162, 99–135 (2009).

    Article  CAS  Google Scholar 

  34. Backhaus, T., Snape, J. & Lazorchak, J. The impact of chemical pollution on biodiversity and ecosystem services: the need for an improved understanding. Integr. Environ. Assess. Manag. 8, 575–576 (2012).

    Article  CAS  Google Scholar 

  35. Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    Article  Google Scholar 

  36. Calabrese, A. et al. Conservation status of Asian elephants: the influence of habitat and governance. Biodivers. Conserv. 26, 2067–2081 (2017).

    Article  Google Scholar 

  37. Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human–elephant conflict: a review of current management strategies and future directions. Front. Ecol. Evol. 6, 235 (2019).

    Article  Google Scholar 

  38. Klaassen, R. H. G. et al. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176–184 (2014).

    Article  Google Scholar 

  39. Güneralp, P. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).

    Article  Google Scholar 

  40. Sherry, T.W., Johnson, M.D. & Strong, A. in Birds of Two Worlds. The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 414–425 (The John Hopkins Univ. Press, 2005).

  41. Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Article  Google Scholar 

  42. Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    Article  CAS  Google Scholar 

  43. Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).

    Article  Google Scholar 

  44. Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Article  CAS  Google Scholar 

  45. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).

  46. Lacroix, K. & Richards, G. An alternative policy evaluation of the British Columbia carbon tax: broadening the application of Elinor Ostrom’s design principles for managing common-pool resources. Ecol. Soc. 20, 38 (2015).

    Article  Google Scholar 

  47. Bennett, N. J. et al. Mainstreaming the social sciences in conservation. Conserv. Biol. 31, 56–66 (2017).

    Article  Google Scholar 

  48. Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).

  49. Resasco, J. Meta-analysis on a decade of testing corridor efficacy: what new have we learned? Curr. Landsc. Ecol. Rep. 4, 61–69 (2019).

    Article  Google Scholar 

  50. Andrade, G. S. M. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. https://doi.org/10.5751/ES-05216-170414 (2012).

  51. Morell, V. Massive wolf kill disrupts long-running Yellowstone Park study. Science 375, 482–482 (2022).

    Article  CAS  Google Scholar 

  52. Post, G. & Geldmann, J. Exceptional responders in conservation. Conserv. Biol. 32, 576–583 (2018).

    Article  Google Scholar 

  53. Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).

    Article  CAS  Google Scholar 

  54. Ostrom, E. A general framework for analyzing sustainability of social–ecological systems. Science 325, 419–422 (2009).

    Article  CAS  Google Scholar 

  55. Kline, M. A., Waring, T. M. & Salerno, J. D. Designing cultural multilevel selection research for sustainability science. Sustainability Sci. 13, 9–19 (2017).

    Article  Google Scholar 

  56. Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).

    Article  Google Scholar 

  57. The World Database on Protected Areas (WDPA) (IUCN & UNEP‐WCMC, 2018); https://www.protectedplanet.net/en/search-areas?geo_type=country&filters%5Bdb_type%5D%5B%5D=wdpa

  58. Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015).

    Article  Google Scholar 

  59. Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article  Google Scholar 

  60. Living Planet Database (LPD) (Zoological Society of London, 2018); http://www.livingplanetindex.org

  61. Kühl, H., Williamson, L., Sanz, C. M., Morgan, D. & Boesch, C. Launch of A.P.E.S. database. Gorilla Journal 34, 20–21 (2007).

    Google Scholar 

  62. Koerner, S. E., Poulsen, J. R., Blanchard, E. J., Okouyi, J. & Clark, C. J. Vertebrate community composition and diversity declines along a defaunation gradient radiating from rural villages in Gabon. J. Appl. Ecol. 54, 805–814 (2017).

    Article  Google Scholar 

  63. Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl Acad. Sci. U.S.A. 112, 14894–14899 (2015).

    Article  CAS  Google Scholar 

  64. Barr, D., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 1–43 (2014).

    Google Scholar 

  65. Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).

    Article  Google Scholar 

  66. McElreath, R. in Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).

  67. Bürkner, P. C. (2017). brms: an R package for Bayesian multilevel models using Stan. J. Stat. Software https://doi.org/10.18637/jss.v080.i01 (2017).

  68. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

    Article  Google Scholar 

  69. R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

  70. Gelman, A., Carlin, J. B. B., Stern, H. S. S. & Rubin, D. B. B. Bayesian Data Analysis (CRC Press, 2014).

  71. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2019); www.protectedplanet.net

  72. Chamberlain, S. rphylopic: Get ‘Silhouettes’ of ‘Organisms’ from ‘Phylopic’. R version 0.3.3.91 https://github.com/sckott/rphylopic (2022).

Download references

Acknowledgements

Our gratitude goes to all PA managers who participated in our survey and filled in our questionnaire (full list of PAs is given in Supplementary Information). We are also grateful to those who participated in the non-governmental organization survey and filled in our questionnaire: Z. Záborská (Regional Tourism Organization Slovenský raj & Spiš), K. Kaliský (Arolla Film), Lesoochranárske zoskupenie VLK (a WOLF Forest Protection Movement), V. Bartuš (WOLF Forest Protection Movement, Eastern Carpathians tribe), Hnutí DUHA Olomouc (an environmental movement in Czech Republic), T.P. Kneževi (World Wildlife Fund Poland, IUCN World Commission on Protected Areas), New Horizons Foundation (Romania), O. Ionescu (Transylvania University), F. Stoican (Asociatia Kogayon), A. Szabo (Asociatia Euroland Banat), Asociatia Salvati flora si fauna Deltei Dunarii, Propark-Fundatia pentru Arii Protejate, J. Kouassi, Y. Kablan, E. Danquah (Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana), A. Samuel and the Conservation Through Public Health Conservation Through Public Health. We also would like to thank A. Bohdan, S. Bunel, H. Chamkhi, M. Duskova, V. Kandza, E. Mbaygone, N. Moses, T.F. Neba, I.O. Németh, P. Sabo, C. Tweh, A. Vaidos, M. Wambui and others for their support in collecting the data. We gratefully acknowledge the financial support obtained for the study from the German Center for Integrative Biodiversity Research (iDiv) (DFG FZT 118, 202548816; T.T.G. and H.S.K.) and the Robert Bosch Foundation (grant number 32.5.8043.0016.0; H.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the paper. T.T.G., L.K., M.B., A.B., L.B., D.E., A.F., S.H., M.H., K.W., M.W., T.S. and H.S.K. conceptualized the study and carried out initial planning. L.K. carried out the statistical analysis and was supported by T.T.G. and H.S.K. The first draft was prepared by T.T.G. and H.S.K., which was revised by L.K., M.B., A.B., L.B., D.E., A.F., S.H., M.H., K.W., M.W. and T.S. All authors reviewed and contributed to a final draft and revised versions and approved the final version for publication.

Corresponding authors

Correspondence to Tsegaye T. Gatiso or Hjalmar S. Kühl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Donald DeAngelis, Stephen Woodley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–8.

Reporting Summary.

Supplementary Data 1

This file contains all the data used for running the different models of this study.

Supplementary Software 1

This file contains the R script for data analyses of this study.

Supplementary Software 2

This file contains the R image for this study.

Supplementary Note 1

This file contains the questionnaire used for the study in Africa.

Supplementary Note 2

This file contains the questionnaire used for the study in Europe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatiso, T.T., Kulik, L., Bachmann, M. et al. Effectiveness of protected areas influenced by socio-economic context. Nat Sustain 5, 861–868 (2022). https://doi.org/10.1038/s41893-022-00932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00932-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene