Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nickel–molybdenum–niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells

Abstract

The cost of fuel cell systems can be largely reduced by developing hydroxide exchange membrane fuel cells (HEMFCs) based on platinum group metal-free (PGM-free) catalysts. However, the sluggish hydrogen oxidation reaction (HOR) in alkaline electrolytes forces HEMFCs to use higher PGM loadings at the anode than proton exchange membrane fuel cells to sustain the desired power densities. Here we report nickel–molybdenum–niobium metallic glasses as PGM-free HOR catalysts. The optimal Ni52Mo13Nb35 metallic glass exhibits an intrinsic exchange current density of 0.35 mA cm−2, outperforming that of a Pt disk catalyst (0.30 mA cm−2). This catalyst also shows remarkable robustness in alkaline electrolyte with a wide stability window up to 0.8 V versus the reversible hydrogen electrode. When used as the anode, this catalyst enables power densities of 390 mW cm−2 in H2/O2 fuel cells and 253 mW cm−2 in H2/air fuel cells, and shows negligible performance degradation over 50 h and 30 h, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of Ni–Mo–Nb MGs.
Fig. 2: Catalyst performances in the HOR.
Fig. 3: Structural analysis of the Ni–Mo–Nb MGs.
Fig. 4: Stability assessments.
Fig. 5: Fuel cell performances of the Ni52Mo13Nb35 MG.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the article and Supplementary Information. Source data are provided with this paper. Any other relevant data are also available from the corresponding authors upon reasonable request.

References

  1. Sekine, S. & Kojima, K. Progress and challenges in Toyota’s fuel cell vehicle development. In 16th Asia Pacific Automotive Engineering Conference https://doi.org/10.4271/2011-28-0061 (The Automotive Research Association of India, 2011).

  2. Shinji Jomori, K. K., Nonoyama, N. & Manabu Kato, T. Y. Experimental study of the activity change due to operation history in PEMFC. Electrochem. Soc. 58, 1457–1469 (2013).

    Google Scholar 

  3. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Setzler, B. P., Zhuang, Z., Wittkopf, J. A. & Yan, Y. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  7. Tatus-Portnoy, Z. et al. A low-loading Ru-rich anode catalyst for high-power anion exchange membrane fuel cells. Chem. Commun. 56, 5669–5672 (2020).

    Article  CAS  Google Scholar 

  8. Rheinländer, P. J., Herranz, J., Durst, J. & Gasteiger, H. A. Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J. Electrochem. Soc. 161, F1448–F1457 (2014).

    Article  Google Scholar 

  9. Zhuang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davydova, E. S., Mukerjee, S., Jaouen, F. & Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 8, 6665–6690 (2018). 2018.

    Article  CAS  Google Scholar 

  11. Dekel, D. R. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375, 158–169 (2018).

    Article  CAS  Google Scholar 

  12. Cherstiouk, O. V. et al. Electrocatalysis of the hydrogen oxidation reaction on carbon-supported bimetallic NiCu particles prepared by an improved wet chemical synthesis. J. Electroanal. Chem. 783, 146–151 (2016).

    Article  CAS  Google Scholar 

  13. Gao, L. et al. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chem. Sci. 8, 5728–5734 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiros, Y., Majari, M. & Nissinen, T. A. Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J. Alloys Compd. 360, 279–285 (2003).

    Article  CAS  Google Scholar 

  15. Ni, W. et al. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem. Int. Ed. 58, 7445–7449 (2019).

    Article  CAS  Google Scholar 

  16. Yang, Y. et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a Ni-based MOF. Angew. Chem. Int. Ed. 131, 10754–10759 (2019).

    Article  Google Scholar 

  17. Kabir, S. et al. Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. J. Mater. Chem. A 5, 24433–24443 (2017).

    Article  CAS  Google Scholar 

  18. Sheng, W. et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 7, 1719–1724 (2014).

    Article  CAS  Google Scholar 

  19. Yang, F. et al. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 58, 14179–14183 (2019).

    Article  CAS  Google Scholar 

  20. Lu, S., Pan, J., Huang, A., Zhuang, L., & Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  21. Song, F. et al. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duan, Y. et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 11, 4789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davydova, E. S., Speck, F. D., Paul, M. T. Y., Dekel, D. R. & Cherevko, S. Stability limits of Ni-based hydrogen oxidation electrocatalysts for anion exchange membrane fuel cells. ACS Catal. 9, 6837–6845 (2019).

    Article  CAS  Google Scholar 

  24. Qin, S. et al. Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 12, 2686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oshchepkov, A. G. et al. Nanostructured nickel nanoparticles supported on vulcan carbon as a highly active catalyst for the hydrogen oxidation reaction in alkaline media. J. Power Sources 402, 447–452 (2018).

    Article  CAS  Google Scholar 

  26. Davydova, E., Zaffran, J., Dhaka, K., Toroker, M. & Dekel, D. Hydrogen oxidation on Ni-based electrocatalysts: the effect of metal doping. Catalysts 8, 454 (2018).

    Article  Google Scholar 

  27. Winsel, E. W. & Ja, A. W. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108, 1073–1079 (1961).

    Article  Google Scholar 

  28. Roy, A. et al. Nickel–copper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell. Sustain. Energy Fuels 2, 2268–2275 (2018).

    Article  CAS  Google Scholar 

  29. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960).

    Article  CAS  Google Scholar 

  30. Greer, A. L. Metallic glasses…on the threshold. Mater. Today 12, 14–22 (2009).

    Article  CAS  Google Scholar 

  31. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, X. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 1, 460–468 (2018).

    Article  CAS  Google Scholar 

  33. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Carmo, M. et al. Bulk Metallic glass nanowire architecture for electrochemical applications. ACS Nano 5, 2979–2298 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J. et al. Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. J. Mater. Chem. A 5, 67–72 (2017).

    Article  CAS  Google Scholar 

  36. Sekol, R. C. et al. Bulk metallic glass micro fuel cell. Small 9, 2081–2085 (2013) 2026.

    Article  CAS  PubMed  Google Scholar 

  37. Schilter, D., Fuller, A. L. & Gray, D. L. Nickel-molybdenum and nickel-tungsten dithiolates: hybrid models for hydrogenases and hydrodesulfurization. Eur. J. Inorg. Chem. 2015, 4638–4642 (2015).

    Article  CAS  Google Scholar 

  38. Inoue, A. & Ta, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

    Article  Google Scholar 

  39. Wang, Y., Brezesinski, T., Antonietti, M. & Smarsly, B. Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 3, 1373–1378 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wei, X. et al. In situ visualizing atomic structural evolution during crystallization in ternary Zr–Cu–Al bulk metallic glasses. Intermetallics 105, 173–178 (2019).

    Article  CAS  Google Scholar 

  41. Fernandez Garrillo, P. A., Grevin, B., Chevalier, N. & Borowik, L. Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 89, 043702 (2018).

    Article  PubMed  Google Scholar 

  42. Ashby, M. & Greer, A. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).

    Article  CAS  Google Scholar 

  43. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  44. Schroers, J. Bulk metallic glasses. Phys. Today 66, 32–37 (2013).

    Article  CAS  Google Scholar 

  45. Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Lan, S. et al. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nat. Commun. 8, 14679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kube, S. A. et al. Compositional dependence of the fragility in metallic glass forming liquids. Nat. Commun. 13, 3708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhukov, A. et al. Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloys Compd. 727, 887–901 (2017).

    Article  CAS  Google Scholar 

  49. Inoue, A. & Nishiyama, N. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651–658 (2007).

    Article  CAS  Google Scholar 

  50. Glasscott, M. W. et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tan, Y. et al. Noble‐metal‐free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting. Adv. Mater. Interfaces 4, 1601086 (2017).

    Article  Google Scholar 

  52. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  53. Sun, Y., Dai, Y., Liu, Y. & Chen, S. A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction. Phys. Chem. Chem. Phys. 14, 2278–2285 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Cong, Y., Yi, B. & Song, Y. Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts. Nano Energy 44, 288–303 (2018).

    Article  CAS  Google Scholar 

  55. Camara, G. A., Ticianelli, E. A., Mukerjee, S., Lee, J. & McBreen, J. The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J. Electrochem. Soc. 149, A748–A753 (2002).

    Article  CAS  Google Scholar 

  56. Wu, G. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 10, 4855 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Gross, O. et al. Signatures of structural differences in Pt–P- and Pd–P-based bulk glass-forming liquids. Commun. Phys. 2, 83 (2019).

    Article  Google Scholar 

  59. Ding, J., Ma, E., Asta, M. & Ritchie, R. O. Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids. Sci. Rep. 5, 17429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ma, D., Stoica, A. D. & Wang, X. L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30–34 (2008).

    Article  PubMed  Google Scholar 

  62. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  63. Zheng, J., Nash, J., Xu, B. & Yan, Y. Towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 165, H27–H29 (2018).

    Article  CAS  Google Scholar 

  64. Cheng, T., Wang, L., Merinov, B. V. & Goddard, W. A. III Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 140, 7787–7790 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Yang, X., Nash, J., Oliveira, N., Yan, Y. & Xu, B. Understanding the pH dependence of underpotential deposited hydrogen on platinum. Angew. Chem. Int. Ed. 58, 17718–17723 (2019).

    Article  CAS  Google Scholar 

  66. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  67. Stevens, M. B. et al. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 12, 2288–2295 (2019).

    Article  CAS  Google Scholar 

  68. Zaffran, J., Nagli, M., Shehadeh, M. & Toroker, M. C. Efficient cationic agents for exfoliating two-dimensional nickel oxide sheets. Theor. Chem. Acc. 137, 3 (2018).

    Article  Google Scholar 

  69. Zaffran, J. & Toroker, M. C. Understanding the oxygen evolution reaction on a two-dimensional NiO2 catalyst. ChemElectroChem 4, 2764–2770 (2017).

    Article  CAS  Google Scholar 

  70. Zaffran, J. et al. Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction. Chem. Mater. 29, 4761–4767 (2017).

    Article  CAS  Google Scholar 

  71. Zaffran, J. & Caspary Toroker, M. Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections vs hybrid functionals. J. Chem. Theory Comput. 12, 3807–3812 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Fidelsky, V., Butera, V., Zaffran, J. & Toroker, M. C. Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theor. Chem. Acc. 135, (2016).

  73. Yayapao, O., Phuruangrat, A., Thongtem, T. & Thongtem, S. Synthesis, characterization and electrochemical properties of α-MoO3 nanobelts for Li-ion batteries. Russ. J. Phys. Chem. A 90, 1224–1230 (2016).

    Article  CAS  Google Scholar 

  74. Duan, Y. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem. Int. Ed. 58, 15772–15777 (2019).

    Article  CAS  Google Scholar 

  75. Suryanarayana, C. & Inoue, A. Bulk Metallic Glasses (CRC Press, 2017).

  76. Yoon, Y., Yan, B. & Surendranath, Y. Suppressing ion transfer enables versatile measurements of electrochemical surface area for intrinsic activity comparisons. J. Am. Chem. Soc. 140, 2397–2400 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Egami, T. & Billinge, S. Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, 2003).

  78. Dimitrov, D. A., Röde, H. & Bishop, A. R. Peak positions and shapes in neutron pair correlation functions from powders of highly anisotropic crystals. Phys. Rev. B 64, 014303 (2001).

    Article  Google Scholar 

  79. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  80. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  81. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  82. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  84. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  85. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. L. Chen at Wuhan University for many helpful discussions. This work was supported by the National Basic Research Program of China (grant no. 2018YFA0702001), the National Natural Science Foundation of China (grant nos. 22225901, 22175162, 21975237, 21521001, 21431006, 21225315, 21321002, 91645202 and 51871120), the Chinese Academy of Sciences (grant nos. KGZD-EW-T05 and XDA090301001), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA21000000), the Anhui Provincial Research and Development Program (grant no. 202004a05020073), the USTC Research Funds of the Double First-Class Initiative (grant no. YD2340002007), the Fundamental Research Funds for the Central Universities (grant nos. WK9990000101, 30919011107 and 30919011404), the Natural Science Foundation of Jiangsu Province (grant no. BK20200019), the National Key R&D Program of China (grant no. 2021YFB3802800) and Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology. This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE), Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

M.-R.G. and S.L. conceived the idea and directed the project. S.-H.Y. and Y.Y. advised on the research and contributed to the scientific interpretation. F.-Y.G., S.-N.L. and J.-C.G. fabricated the metallic glasses and collected and analysed the data. X.-L.Z., L.Z., Z.-G.D. and W.L. performed the DFT calculations. Y.-R.Z. and Y.D. carried out the XRD measurements. W.D. performed the DMA measurements. R.-C.B. and X.Y. assisted with the electrochemical measurements. S.Q., Z.-Z.N. and P.-P.Y. assisted with the structure analyses. F.-Y.G., S.-N.L., J.-C.G., S.L. and M.-R.G. wrote and edited the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Si Lan or Min-Rui Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hamish Miller, Jan Schroers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–51 and Tables 1–5.

Supplementary Data

Atomic coordinates of the simulated Ni52Mo13Nb35 models.

Source data

Source Data Fig. 4

The data used to plot the figures.

Source Data Fig. 5

The data used to plot the figures.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, FY., Liu, SN., Ge, JC. et al. Nickel–molybdenum–niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells. Nat Catal 5, 993–1005 (2022). https://doi.org/10.1038/s41929-022-00862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00862-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing