Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3

Abstract

Cu zeolites catalyse low-temperature (<523 K) selective catalytic reduction (SCR) of nitrogen oxides (NOx) via a redox cycle involving dynamic interconversion between NH3-solvated mononuclear CuI and binuclear CuII complexes. CuI oxidation requires the pairing of two mobilized CuI(NH3)2 complexes to form binuclear intermediates, implying that CuI oxidation kinetics should depend on framework Al density, given that Cu ions are ionically tethered to anionic charges at Al sites in zeolite lattices. Here we combine statistical simulations, steady-state kinetics and operando X-ray absorption spectroscopy to interrogate Cu–chabazite (Cu–CHA) zeolites of varying framework Al density (0.2–1.7 Al centres per cha cage). Increasing the Al density leads to systematic increases in both the fraction of CuI ions that are SCR active (that is, O2 oxidizable) and CuI oxidation rate constants (per Cu), revealing insights into how anionic Al centres in zeolite frameworks regulate the mobility of ionically tethered Cu cations and their dynamic reactivity during low-temperature NOx SCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the pairing of CuI cations ionically tethered to framework Al.
Fig. 2: SCR rates (per Cu site) as a function of O2 pressure.
Fig. 3: Steady-state CuI fractions measured by operando XAS.
Fig. 4: CuI oxidation kinetics and transient XAS (473 K) on Cu–CHA materials of varying composition.
Fig. 5: Statistically predicted fractions of pairable Cu sites versus Cu and Al density as a function of the number of remote cha cages separating Cu site pairs.
Fig. 6: CuII reduction kinetics and transient XAS (473 K) on Cu–CHA materials of varying composition.

Similar content being viewed by others

Data availability

Experimental raw data underlying all of the results and conclusions of this work are available upon request to the corresponding author. Initial and final configurations for the calculations can be found at https://doi.org/10.5281/zenodo.7604048.

Code availability

Simulation codes used in this work have been uploaded to a Zenodo repository at https://doi.org/10.5281/zenodo.7604048.

References

  1. Hinshelwood, C. N. The Kinetics of Chemical Change (Oxford Clarendon Press, 1940).

  2. Langmuir, I. Part II.—“Heterogeneous reactions”. Chemical reactions on surfaces. Trans. Faraday Soc. 17, 607–620 (1922).

    Article  Google Scholar 

  3. Hougen, O. A. & Watson, K. M. Solid catalysts and reaction rates—general principles. Ind. Eng. Chem. 35, 529–541 (1943).

    Article  CAS  Google Scholar 

  4. Krishna, S. H., Jones, C. B. & Gounder, R. Dynamic interconversion of metal active site ensembles in zeolite catalysis. Annu. Rev. Chem. Biomol. Eng. 12, 115–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Z., Zandkarimi, B. & Alexandrova, A. N. Ensembles of metastable states govern heterogeneous catalysis on dynamic interfaces. Acc. Chem. Res. 53, 447–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y.-G., Mei, D., Glezakou, V.-A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, Y. et al. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Resasco, J., Dai, S., Graham, G., Pan, X. & Christopher, P. Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J. Phys. Chem. C 122, 25143–25157 (2018).

    Article  CAS  Google Scholar 

  12. Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2020).

    Article  Google Scholar 

  13. Paolucci, C., Di Iorio, J. R., Schneider, W. F. & Gounder, R. Solvation and mobilization of copper active sites in zeolites by ammonia: consequences for the catalytic reduction of nitrogen oxides. Acc. Chem. Res. 53, 1881–1892 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Mandal, K. et al. Condition-dependent Pd speciation and NO adsorption in Pd/zeolites. ACS Catal. 10, 12801–12818 (2020).

    Article  CAS  Google Scholar 

  15. Paolucci, C. et al. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138, 6028–6048 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Janssens, T. V. W. et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal. 5, 2832–2845 (2015).

    Article  CAS  Google Scholar 

  17. Lomachenko, K. A. et al. The Cu–CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J. Am. Chem. Soc. 138, 12025–12028 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Brogaard, R. Y. et al. Ethene dimerization on zeolite-hosted Ni ions: reversible mobilization of the active site. ACS Catal. 9, 5645–5650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Imbao, J., van Bokhoven, J. A., Clark, A. & Nachtegaal, M. Elucidating the mechanism of heterogeneous Wacker oxidation over Pd-Cu/zeolite Y by transient XAS. Nat. Commun. 11, 1118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Espeel, P. H., De Peuter, G., Tielen, M. C. & Jacobs, P. A. Mechanism of the Wacker oxidation of alkenes over Cu–Pd-exchanged Y zeolites. J. Phys. Chem. 98, 11588–11596 (1994).

    Article  CAS  Google Scholar 

  21. Signorile, M., Borfecchia, E., Bordiga, S. & Berlier, G. Influence of ion mobility on the redox and catalytic properties of Cu ions in zeolites. Chem. Sci. 13, 10238–10250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gounder, R. & Moini, A. Automotive NOx abatement using zeolite-based technologies. React. Chem. Eng. 4, 966–968 (2019).

    Article  CAS  Google Scholar 

  23. Lambert, C. K. Perspective on SCR NOx control for diesel vehicles. React. Chem. Eng. 4, 969–974 (2019).

    Article  CAS  Google Scholar 

  24. Peden, C. H. F. Cu/chabazite catalysts for ‘lean-burn’ vehicle emission control. J. Catal. 373, 384–389 (2019).

    Article  CAS  Google Scholar 

  25. Badshah, H., Posada, F. & Muncrief, R. Current State of NOx Emissions from In-use Heavy-Duty Diesel Vehicles in the United States (International Council on Clean Transportation, 2019).

  26. Krishna, S. H., Jones, C. B., Miller, J. T., Ribeiro, F. H. & Gounder, R. Combining kinetics and operando spectroscopy to interrogate the mechanism and active site requirements of NOx selective catalytic reduction with NH3 on Cu-zeolites. J. Phys. Chem. Lett. 11, 5029–5036 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Deka, U. et al. Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J. Phys. Chem. C 116, 4809–4818 (2012).

    Article  CAS  Google Scholar 

  28. Paolucci, C. et al. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu–SSZ-13. Angew. Chem. Int. Ed. 53, 11828–11833 (2014).

    Article  CAS  Google Scholar 

  29. Bates, S. A. et al. Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu–SSZ-13. J. Catal. 312, 87–97 (2014).

    Article  CAS  Google Scholar 

  30. Kispersky, V. F., Kropf, A. J., Ribeiro, F. H. & Miller, J. T. Low absorption vitreous carbon reactors for operandoXAS: a case study on Cu/zeolites for selective catalytic reduction of NOx by NH3. Phys. Chem. Chem. Phys. 14, 2229–2238 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X. et al. Direct measurement of enthalpy and entropy changes in NH3 promoted O2 activation over Cu–CHA at low temperature. ChemCatChem 13, 2577–2582 (2021).

    Article  CAS  Google Scholar 

  32. Luo, J. et al. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: nature of acidic sites probed by NH3 titration. J. Catal. 348, 291–299 (2017).

    Article  CAS  Google Scholar 

  33. Giordanino, F. et al. Interaction of NH3 with Cu–SSZ-13 catalyst: a complementary FTIR, XANES, and XES study. J. Phys. Chem. Lett. 5, 1552–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Negri, C. et al. Structure and reactivity of oxygen-bridged diamino dicopper(ii) complexes in Cu-ion-exchanged chabazite catalyst for NH3-mediated selective catalytic reduction. J. Am. Chem. Soc. 142, 15884–15896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic molecules: pathways for two-electron oxidation with a four-electron oxidant and a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Hoover, J. M., Ryland, B. L. & Stahl, S. S. Mechanism of copper(i)/TEMPO-catalyzed aerobic alcohol oxidation. J. Am. Chem. Soc. 135, 2357–2367 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solomon, E. I. et al. Copper dioxygen (bio)inorganic chemistry. Faraday Discuss. 148, 11–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao, F. et al. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 319, 1–14 (2014).

    Article  CAS  Google Scholar 

  40. Gao, F., Mei, D., Wang, Y., Szanyi, J. & Peden, C. H. F. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J. Am. Chem. Soc. 139, 4935–4942 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, C. et al. In situ spectroscopic studies on the redox cycle of NH3-SCR over Cu–CHA zeolites. ChemCatChem 12, 3050–3059 (2020).

    Article  CAS  Google Scholar 

  42. Millan, R., Cnudde, P., van Speybroeck, V. & Boronat, M. Mobility and reactivity of Cu+ species in Cu–CHA catalysts under NH3-SCR–NOx reaction conditions: insights from AIMD simulations. JACS Au 1, 1778–1787 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, L., Falsig, H., Janssens, T. V. W. & Grönbeck, H. Activation of oxygen on (NH3CuNH3)+ in NH3-SCR over Cu–CHA. J. Catal. 358, 179–186 (2018).

    Article  CAS  Google Scholar 

  44. Liu, C., Kubota, H., Toyao, T., Maeno, Z. & Shimizu, K. Mechanistic insights into the oxidation of copper(i) species during NH3-SCR over Cu–CHA zeolites: a DFT study. Catal. Sci. Technol. 10, 3586–3593 (2020).

    Article  CAS  Google Scholar 

  45. Gao, F. et al. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of Brønsted acidity. J. Catal. 331, 25–38 (2015).

    Article  CAS  Google Scholar 

  46. Godiksen, A., Isaksen, O. L., Rasmussen, S. B., Vennestrøm, P. N. R. & Mossin, S. Site-specific reactivity of copper chabazite zeolites with nitric oxide, ammonia, and oxygen. ChemCatChem 10, 366–370 (2018).

    Article  CAS  Google Scholar 

  47. Lee, H., Song, I., Jeon, S. W. & Kim, D. H. Mobility of Cu ions in Cu–SSZ-13 determines the reactivity of selective catalytic reduction of NOx with NH3. J. Phys. Chem. Lett. 12, 3210–3216 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, H., Song, I., Jeon, S. W. & Kim, D. H. Control of the Cu ion species in Cu–SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity. Catal. Sci. Technol. 11, 4838–4848 (2021).

    Article  CAS  Google Scholar 

  49. Fickel, D. W., D’Addio, E., Lauterbach, J. A. & Lobo, R. F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. 102, 441–448 (2011).

    Article  CAS  Google Scholar 

  50. Zones, S. I. Zeolite SSZ-13 and its method of preparation. US patent US4544538A (1985).

  51. Di Iorio, J. R. & Gounder, R. Controlling the isolation and pairing of aluminum in chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chem. Mater. 28, 2236–2247 (2016).

    Article  Google Scholar 

  52. Di Iorio, J. R., Nimlos, C. T. & Gounder, R. Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity. ACS Catal. 7, 6663–6674 (2017).

    Article  Google Scholar 

  53. Jones, C. B. et al. Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu–CHA zeolites. J. Catal. 389, 140–149 (2020).

    Article  CAS  Google Scholar 

  54. Oda, A. et al. Spectroscopic evidence of efficient generation of dicopper intermediate in selective catalytic reduction of NO over Cu-ion-exchanged zeolites. ACS Catal. 10, 12333–12339 (2020).

    Article  CAS  Google Scholar 

  55. Greenaway, A. G. et al. Detection of key transient Cu intermediates in SSZ-13 during NH3-SCR deNOx by modulation excitation IR spectroscopy. Chem. Sci. 11, 447–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Fahami, A. R. et al. The dynamic nature of Cu sites in Cu–SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR. React. Chem. Eng. 4, 1000–1018 (2019).

    Article  CAS  Google Scholar 

  57. Feng, Y. et al. First-principles microkinetic model for low-temperature NH3-assisted selective catalytic reduction of NO over Cu–CHA. ACS Catal. 11, 14395–14407 (2021).

    Article  CAS  Google Scholar 

  58. Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu–SSZ-13. Nat. Catal. 1, 221–227 (2018).

    Article  CAS  Google Scholar 

  59. Martini, A. et al. Assessing the influence of zeolite composition on oxygen-bridged diamino dicopper(ii) complexes in Cu–CHA DeNOx catalysts by machine learning-assisted X-ray absorption spectroscopy. J. Phys. Chem. Lett. 13, 6164–6170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krishna, S. H., Jones, C. B. & Gounder, R. Temperature dependence of Cu(i) oxidation and Cu(ii) reduction kinetics in the selective catalytic reduction of NOx with NH3 on Cu–chabazite zeolites. J. Catal. 404, 873–882 (2021).

    Article  CAS  Google Scholar 

  61. Shwan, S. et al. Solid-state ion-exchange of copper into zeolites facilitated by ammonia at low temperature. ACS Catal. 5, 16–19 (2015).

    Article  CAS  Google Scholar 

  62. Vennestrøm, P. N. R. et al. The role of protons and formation Cu(NH3)2+ during ammonia-assisted solid-state ion exchange of copper(i) oxide into zeolites. Top. Catal. 62, 100–107 (2019).

    Article  Google Scholar 

  63. Cavataio, G. et al. Laboratory Testing of Urea-SCR Formulations to Meet Tier 2 Bin 5 Emissions. SAE Technical Paper 2007-01-1575 (SAE International, 2007).

  64. Doronkin, D. E. et al. Operando spatially- and time-resolved XAS study on zeolite catalysts for selective catalytic reduction of NOx by NH3. J. Phys. Chem. C 118, 10204–10212 (2014).

    Article  CAS  Google Scholar 

  65. Becher, J. et al. Chemical gradients in automotive Cu–SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nat. Catal. 4, 46–53 (2021).

    Article  CAS  Google Scholar 

  66. Chen, L. et al. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu–CHA. ACS Catal. 10, 5646–5656 (2020).

    Article  CAS  Google Scholar 

  67. Tarach, K. A. et al. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B Environ. 284, 119752 (2021).

    Article  CAS  Google Scholar 

  68. Cui, Y. et al. Influences of Na+ co-cation on the structure and performance of Cu/SSZ-13 selective catalytic reduction catalysts. Catal. Today 339, 233–240 (2020).

    Article  CAS  Google Scholar 

  69. Gao, F. et al. Effects of alkali and alkaline Earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts. ACS Catal. 5, 6780–6791 (2015).

    Article  CAS  Google Scholar 

  70. Stamatakis, M. & Vlachos, D. G. Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: current status and frontiers. ACS Catal. 2, 2648–2663 (2012).

    Article  CAS  Google Scholar 

  71. Shih, A. J. et al. Spectroscopic and kinetic responses of Cu–SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction. Appl. Catal. Gen. 574, 122–131 (2019).

    Article  CAS  Google Scholar 

  72. Kropf, A. J. et al. The new MRCAT (Sector 10) bending magnet beamline at the Advanced Photon Source. AIP Conf. Proc. 1234, 299–302 (2010).

    Article  CAS  Google Scholar 

  73. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Millan, R. et al. Theoretical and spectroscopic evidence of the dynamic nature of copper active sites in Cu–CHA catalysts under selective catalytic reduction (NH3-SCR–NOx) conditions. J. Phys. Chem. Lett. 11, 10060–10066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support provided by the National Science Foundation Designing Materials to Revolutionize and Engineer our Future programme under award number 1922173-CBET (received by R.G. and W.F.S.). S.H.K. acknowledges funding via the Henson Postdoctoral Fellowship from the Charles D. Davidson School of Chemical Engineering at Purdue University. Use of the Advanced Photon Source is supported by the US Department of Energy Office of Science and Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. Materials Research Collaborative Access Team operations and beamline 10-ID are supported by the Department of Energy and Materials Research Collaborative Access Team member institutions. We thank C. Paolucci (Virginia) for helpful technical discussions. We thank SACHEM for providing the organic structure-directing agent used to synthesize SSZ-13. We thank J. Harwood (Purdue Interdepartmental NMR Facility) for assistance with collecting NMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

S.H.K., C.B.J. and R.G. acquired and analysed the kinetic data in this work. S.H.K., C.B.J., D.P.D., J.T.M. and R.G. acquired and analysed the spectroscopic data in this work. A.G., Y.W. and W.F.S. acquired and analysed the computational data in this work. S.H.K. and R.G. led the writing of the manuscript. All authors assisted in writing and revision of the manuscript.

Corresponding author

Correspondence to Rajamani Gounder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Elisa Borfecchia, Henrik Gronbeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, discussion and references, including Supplementary Figs. 1–18 and Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.H., Goswami, A., Wang, Y. et al. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 6, 276–285 (2023). https://doi.org/10.1038/s41929-023-00932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00932-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing