Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The randomized measurement toolbox

Abstract

Programmable quantum simulators and quantum computers are opening unprecedented opportunities for exploring and exploiting the properties of highly entangled complex quantum systems. The complexity of large quantum systems is the source of computational power but also makes them difficult to control precisely or characterize accurately using measured classical data. We review protocols for probing the properties of complex many-qubit systems using measurement schemes that are practical using today’s quantum platforms. In these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis; then a classical computer processes the measurement outcomes to estimate the desired property. The randomization of the measurement procedure has distinct advantages. For example, a single data set can be used multiple times to pursue a variety of applications, and imperfections in the measurements are mapped to a simplified noise model that can more easily be mitigated. We discuss a range of cases that have already been realized in quantum devices, including Hamiltonian simulation tasks, probes of quantum chaos, measurements of non-local order parameters, and comparison of quantum states produced in distantly separated laboratories. By providing a workable method for translating a complex quantum state into a succinct classical representation that preserves a rich variety of relevant physical properties, the randomized measurement toolbox strengthens our ability to grasp and control the quantum world. 

Key points

  • Increasingly sophisticated quantum simulators and quantum computers are becoming available, but they are difficult to characterize accurately using classically measured data.

  • Randomized measurements provide a feasible procedure for converting a many-qubit quantum state to succinct classical data that can later be processed to estimate many properties of interest with rigorous guarantees.

  • Randomized measurements are readily implemented in noisy intermediate-scale quantum devices by repeatedly preparing and measuring a quantum state in a randomly selected basis.

  • Many applications of randomized measurements have been conceived and experimentally demonstrated, including Hamiltonian simulation tasks, probes of quantum chaos, measurements of non-local order parameters, and comparison of quantum states produced in distantly separated laboratories.

  • Experimental imperfections in performing randomized measurements can often be easily mitigated; a wide range of different physical platforms realizing qubits, bosonic and fermionic quantum many-body systems is accessible.

  • Viewed as a powerful quantum-to-classical converter, randomized measurements enable the use of classical algorithms to learn and predict properties of quantum systems that may never have been realized before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Randomized measurements.
Fig. 2: Pauli observables.
Fig. 3: Estimation of the second Rényi entropy with randomized measurements.
Fig. 4: Detecting topological order with randomized measurements.
Fig. 5: Fidelity estimation with randomized measurements.
Fig. 6: Hamiltonian learning with randomized measurements.
Fig. 7: Variational quantum algorithm using randomized measurements.

Similar content being viewed by others

References

  1. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quant. 2, 017003 (2021).

    Article  Google Scholar 

  3. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  Google Scholar 

  4. Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).

    Article  Google Scholar 

  5. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  6. Morgado, M. & Whitlock, S. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quant. Sci. 3, 023501 (2021).

    Article  ADS  Google Scholar 

  7. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  8. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  9. Kloeffel, C. & Loss, D. Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4, 51–81 (2013).

    Article  ADS  Google Scholar 

  10. Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. (in the press); preprint available at https://arxiv.org/abs/2112.08863.

  11. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

    Article  ADS  Google Scholar 

  12. Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    Article  Google Scholar 

  13. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  ADS  Google Scholar 

  14. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quant. 2, 017001 (2021).

    Article  Google Scholar 

  15. Flammia, S. T., Gross, D., Liu, Y.-K. & Eisert, J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012).

    Article  ADS  MATH  Google Scholar 

  16. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. In STOC’16 — Proc. 48th Annual ACM SIGACT Symposium on Theory of Computing, 913–925 (ACM, 2016).

  17. O’Donnell, R. & Wright, J. Efficient quantum tomography. In STOC’16 — Proc. 48th Annual ACM SIGACT Symposium on Theory of Computing, 899–912 (ACM, 2016).

  18. Aaronson, S.Shadow tomography of quantum states. In STOC’18 — Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing, 325–338 (ACM, 2018).

  19. Aaronson, S. & Rothblum, G. N. Gentle measurement of quantum states and differential privacy. In STOC’19 — Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing, 322–333 (ACM, 2019).

  20. Bădescu, C. & O’Donnell, R. Improved quantum data analysis. In STOC ’21 — Proc. 53rd Annual ACM SIGACT Symposium on Theory of Computing, 1398–1411 (ACM, 2021).

  21. van Enk, S. J. & Beenakker, C. W. J. Measuring Trρn on single copies of ρ using random measurements. Phys. Rev. Lett. 108, 110503 (2012).

    Article  Google Scholar 

  22. Elben, A., Vermersch, B., Dalmonte, M., Cirac, J. I. & Zoller, P. Rényi entropies from random quenches in atomic Hubbard and spin models. Phys. Rev. Lett. 120, 50406 (2018).

    Article  ADS  Google Scholar 

  23. Elben, A., Vermersch, B., Roos, C. F. & Zoller, P. Statistical correlations between locally randomized measurements: a toolbox for probing entanglement in many-body quantum states. Phys. Rev. A 99, 1–12 (2019).

    Article  MathSciNet  Google Scholar 

  24. Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

    Article  Google Scholar 

  25. Paini, M. & Kalev, A. An approximate description of quantum states. Preprint at https://arxiv.org/abs/1910.10543 (2019).

  26. Morris, J. & Dakić, B. Selective quantum state tomography. Preprint at https://arxiv.org/abs/1909.05880 (2019).

  27. Knips, L. et al. Multipartite entanglement analysis from random correlations. npj Quant. Inf. 6, 51 (2020).

    Article  ADS  Google Scholar 

  28. Ketterer, A., Wyderka, N. & Gühne, O. Characterizing multipartite entanglement with moments of random correlations. Phys. Rev. Lett. 122, 120505 (2019).

    Article  ADS  Google Scholar 

  29. Chen, S., Yu, W., Zeng, P. & Flammia, S. T. Robust shadow estimation. PRX Quantum 2, 030348 (2021).

    Article  ADS  Google Scholar 

  30. Koh, D. E. & Grewal, S. Classical shadows with noise. Quantum 6, 776 (2022).

    Article  Google Scholar 

  31. Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 10504 (2020).

    Article  ADS  Google Scholar 

  32. Zhu, D. et al. Cross-platform comparison of arbitrary quantum computations. Preprint at https://arxiv.org/abs/2107.11387 (2021).

  33. Vermersch, B., Elben, A., Sieberer, L. M., Yao, N. Y. & Zoller, P. Probing scrambling using statistical correlations between randomized measurements. Phys. Rev. X 9, 21061 (2019).

    Google Scholar 

  34. Joshi, M. K. et al. Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions. Phys. Rev. Lett. 124, 240505 (2020).

    Article  ADS  Google Scholar 

  35. Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Article  ADS  Google Scholar 

  36. Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).

    Article  ADS  Google Scholar 

  37. Elben, A. et al. Many-body topological invariants from randomized measurements in synthetic quantum matter. Sci. Adv. 6, eaaz3666 (2020).

    Article  ADS  Google Scholar 

  38. Gross, D., Audenaert, K. & Eisert, J. Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Dankert, C., Cleve, R., Emerson, J. & Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).

    Article  ADS  Google Scholar 

  40. Vitale, V. et al. Symmetry-resolved dynamical purification in synthetic quantum matter. SciPost Phys. 12, 106 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  41. Rath, A., Branciard, C., Minguzzi, A. & Vermersch, B. Quantum fisher information from randomized measurements. Phys. Rev. Lett. 127, 260501 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  42. Evans, T. J., Harper, R. & Flammia, S. T. Scalable Bayesian Hamiltonian learning. Preprint at https://arxiv.org/abs/1912.07636 (2019).

  43. Cotler, J. & Wilczek, F. Quantum overlapping tomography. Phys. Rev. Lett. 124, 100401 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  44. Rath, A., van Bijnen, R., Elben, A., Zoller, P. & Vermersch, B. Importance sampling of randomized measurements for probing entanglement. Phys. Rev. Lett. 127, 200503 (2021).

    Article  ADS  Google Scholar 

  45. Banaszek, K., Cramer, M. & Gross, D. Focus on quantum tomography. New J. Phys. 15, 125020 (2013).

    Article  ADS  Google Scholar 

  46. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inf. Theory 63, 5628–5641 (2017).

    MathSciNet  MATH  Google Scholar 

  47. O’Donnell, R. & Wright, J. Efficient quantum tomography II. In STOC’17 — Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing, 962–974 (ACM, 2017).

  48. Chen, S., Huang, B., Li, J., Liu, A. & Sellke, M. Tight bounds for state tomography with incoherent measurements. Preprint at https://arxiv.org/abs/2206.05265 (2022).

  49. Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).

    Article  ADS  Google Scholar 

  50. Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  51. Ohliger, M., Nesme, V. & Eisert, J. Efficient and feasible state tomography of quantum many-body systems. New J. Phys. 15, 015024 (2013).

    Article  ADS  MATH  Google Scholar 

  52. Sugiyama, T., Turner, P. S. & Murao, M. Precision-guaranteed quantum tomography. Phys. Rev. Lett. 111, 160406 (2013).

    Article  ADS  Google Scholar 

  53. Kueng, R., Rauhut, H. & Terstiege, U. Low rank matrix recovery from rank one measurements. Appl. Comput. Harmon. Anal. 42, 88–116 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  54. Guta, M., Kahn, J., Kueng, R. & Tropp, J. A. Fast state tomography with optimal error bounds. J. Phys. A 53, 204001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  55. Eisert, J., Cramer, M. & Plenio, M. B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Vovrosh, J. & Knolle, J. Confinement and entanglement dynamics on a digital quantum computer. Sci. Rep. 11, 11577 (2021).

    Article  ADS  Google Scholar 

  57. Neven, A. et al. Symmetry-resolved entanglement detection using partial transpose moments. npj Quantum Inf. 7, 152 (2021).

    Article  ADS  Google Scholar 

  58. Zeng, B., Chen, X., Zhou, D.-L. & Wen, X.-G. Quantum Information Meets Quantum Matter. From Quantum Entanglement to Topological Phases of Many-body Systems (Springer, 2019).

  59. Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012).

    Article  ADS  Google Scholar 

  60. Cian, Z.-P. et al. Many-body Chern number from statistical correlations of randomized measurements. Phys. Rev. Lett. 126, 050501 (2021).

    Article  ADS  Google Scholar 

  61. Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

    Article  ADS  Google Scholar 

  62. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  63. Levin, M. & Wen, X. G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).

    Article  ADS  Google Scholar 

  64. Flammia, S. T., Hamma, A., Hughes, T. L. & Wen, X. G. Topological entanglement Rényi entropy and reduced density matrix structure. Phys. Rev. Lett. 103, 261601 (2009).

    Article  ADS  Google Scholar 

  65. Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Science 377, eabk3333 (2022).

    Article  MathSciNet  Google Scholar 

  66. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. C 28, 100–108 (1979).

    MATH  Google Scholar 

  67. Swingle, B. Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988–990 (2018).

    Article  Google Scholar 

  68. Lewis-Swan, R. J., Safavi-Naini, A., Kaufman, A. M. & Rey, A. M. Dynamics of quantum information. Nat. Rev. Phys. 1, 627–634 (2019).

    Article  Google Scholar 

  69. Liu, H. & Sonner, J. Quantum many-body physics from a gravitational lens. Nat. Rev. Phys. 2, 615–633 (2020).

    Article  Google Scholar 

  70. Nie, X. et al. Detecting scrambling via statistical correlations between randomized measurements on an NMR quantum simulator. Preprint at https://arxiv.org/abs/1903.12237 (2019).

  71. Qi, X.-L., Davis, E. J., Periwal, A. & Schleier-Smith, M. Measuring operator size growth in quantum quench experiments. Preprint at https://arxiv.org/abs/1906.00524 (2019).

  72. Garcia, R. J., Zhou, Y. & Jaffe, A. Quantum scrambling with classical shadows. Phys. Rev. Research 3, 033155 (2021).

    Article  ADS  Google Scholar 

  73. Joshi, L. K. et al. Probing many-body quantum chaos with quantum simulators. Phys. Rev. X 12, 011018 (2022).

    Google Scholar 

  74. Levy, R., Luo, D. & Clark, B. K. Classical shadows for quantum process tomography on near-term quantum computers. Preprint at https://arxiv.org/abs/2110.02965 (2021).

  75. Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article  ADS  Google Scholar 

  76. da Silva, M. P., Landon-Cardinal, O. & Poulin, D. Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107, 210404 (2011).

    Article  Google Scholar 

  77. Fedorov, A., Steffen, L., Baur, M., da Silva, M. P. & Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2011).

    Article  ADS  Google Scholar 

  78. Lanyon, B. P. et al. Efficient tomography of a quantum many-body-system. Nat. Phys. 13, 1158–1162 (2017).

    Article  Google Scholar 

  79. Seshadri, A., Ringbauer, M., Monz, T. & Becker, S. Theory of versatile fidelity estimation with confidence. Preprint at https://arxiv.org/abs/2112.07947 (2021).

  80. Seshadri, A., Ringbauer, M., Blatt, R., Monz, T. & Becker, S. Versatile fidelity estimation with confidence. Preprint at https://arxiv.org/abs/2112.07925 (2021).

  81. Kliesch, M. & Roth, I. Theory of quantum system certification. PRX Quantum 2, 010201 (2021).

    Article  Google Scholar 

  82. Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).

    Article  Google Scholar 

  83. Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).

    Article  Google Scholar 

  84. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  85. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  ADS  Google Scholar 

  86. Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 159–163 (2018).

    Article  MATH  Google Scholar 

  87. Liu, Y., Otten, M., Bassirianjahromi, R., Jiang, L. & Fefferman, B. Benchmarking near-term quantum computers via random circuit sampling. Preprint at https://arxiv.org/abs/2105.05232 (2021).

  88. Choi, J. et al. Emergent randomness and benchmarking from many-body quantum chaos. Preprint at https://arxiv.org/abs/2103.03535 (2021).

  89. Cotler, J. S. et al. Emergent quantum state designs from individual many-body wavefunctions. Preprint at https://arxiv.org/abs/2103.03536 (2021).

  90. Garrison, J. R. & Grover, T. Does a single eigenstate encode the full Hamiltonian? Phys. Rev. X 8, 021026 (2018).

    Google Scholar 

  91. Qi, X.-L. & Ranard, D. Determining a local Hamiltonian from a single eigenstate. Quantum 3, 159 (2019).

    Article  Google Scholar 

  92. Bairey, E., Arad, I. & Lindner, N. H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 122, 020504 (2019).

    Article  ADS  Google Scholar 

  93. Bairey, E., Guo, C., Poletti, D., Lindner, N. H. & Arad, I. Learning the dynamics of open quantum systems from their steady states. New J. Phys. 22, 032001 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  94. Li, Z., Zou, L. & Hsieh, T. H. Hamiltonian tomography via quantum quench. Phys. Rev. Lett. 124, 160502 (2020).

    Article  ADS  Google Scholar 

  95. Kokail, C., van Bijnen, R., Elben, A., Vermersch, B. & Zoller, P. Entanglement Hamiltonian tomography in quantum simulation. Nat. Phys. 17, 936–942 (2021).

    Article  Google Scholar 

  96. Calabrese, P. & Cardy, J. Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  97. Anshu, A., Arunachalam, S., Kuwahara, T. & Soleimanifar, M. Sample-efficient learning of interacting quantum systems. Nat. Phys. 17, 931–935 (2021).

    Article  Google Scholar 

  98. Haah, J., Kothari, R. & Tang, E. Optimal learning of quantum Hamiltonians from high-temperature Gibbs states. Preprint at https://arxiv.org/abs/2108.04842 (2021).

  99. Rouzé, C. & França, D. S.Learning quantum many-body systems from a few copies. Preprint at https://arxiv.org/abs/2107.03333 (2021).

  100. Yu, W., Sun, J., Han, Z. & Yuan, X. Practical and efficient Hamiltonian learning. Preprint at https://arxiv.org/abs/2201.00190 (2022).

  101. Seif, A., Hafezi, M. & Liu, Y.-K. Compressed sensing measurement of long-range correlated noise. Preprint at https://arxiv.org/abs/2105.12589 (2021).

  102. Hangleiter, D., Roth, I., Eisert, J. & Roushan, P. Precise Hamiltonian identification of a superconducting quantum processor. Preprint at https://arxiv.org/abs/2108.08319 (2021).

  103. Blume-Kohout, R. et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat. Commun. 8, 14485 (2016).

    Article  Google Scholar 

  104. Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).

    Article  Google Scholar 

  105. Merkel, S. T. et al. Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013).

    Article  ADS  Google Scholar 

  106. Madzik, M. T. et al. Precision tomography of a three-qubit donor quantum processor in silicon. Nature 601, 348–353 (2022).

    Article  ADS  Google Scholar 

  107. Samach, G. O. et al. Lindblad tomography of a superconducting quantum processor. Preprint at https://arxiv.org/abs/2105.02338 (2022).

  108. Brieger, R., Roth, I. & Kliesch, M. Compressive gate set tomography. Preprint at https://arxiv.org/abs/2112.05176 (2021).

  109. Evans, T. et al. Fast bayesian tomography of a two-qubit gate set in silicon. Phys. Rev. Appl. 17, 024068 (2022).

    Article  ADS  Google Scholar 

  110. van den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Preprint at https://arxiv.org/abs/2201.09866 (2022).

  111. Flammia, S. T. Averaged circuit eigenvalue sampling. Preprint at https://arxiv.org/abs/2108.05803 (2021).

  112. Harper, R., Flammia, S. T. & Wallman, J. J. Efficient learning of quantum noise. Nat. Phys. 16, 1184–1188 (2020).

    Article  Google Scholar 

  113. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  114. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  115. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  116. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  ADS  Google Scholar 

  117. Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).

    Article  ADS  Google Scholar 

  118. Hadfield, C., Bravyi, S., Raymond, R. & Mezzacapo, A. Measurements of quantum Hamiltonians with locally-biased classical shadows. Comm. Math. Phys. 391, 951–967 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Hillmich, S., Hadfield, C., Raymond, R., Mezzacapo, A. & Wille, R. Decision diagrams for quantum measurements with shallow circuits. In International Conference on Quantum Computing and Engineering 24–34 (IEEE, 2021).

  120. Huang, H.-Y., Kueng, R. & Preskill, J. Efficient estimation of Pauli observables by derandomization. Phys. Rev. Lett. 127, 030503 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  121. Zhang, T. et al. Experimental quantum state measurement with classical shadows. Phys. Rev. Lett. 127, 200501 (2021).

    Article  ADS  Google Scholar 

  122. Zhao, A., Rubin, N. C. & Miyake, A. Fermionic partial tomography via classical shadows. Phys. Rev. Lett. 127, 110504 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  123. Yen, T.-C., Ganeshram, A. & Izmaylov, A. F. Deterministic improvements of quantum measurements with grouping of compatible operators, non-local transformations, and covariance estimates. Preprint at https://arxiv.org/abs/2201.01471 (2022).

  124. Shlosberg, A. et al. Adaptive estimation of quantum observables. Preprint at https://arxiv.org/abs/2110.15339 (2021).

  125. Kohda, M. et al. Quantum expectation-value estimation by computational basis sampling. Phys. Rev. Research 4, 033173 (2022).

  126. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article  ADS  Google Scholar 

  127. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  128. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).

    Article  ADS  Google Scholar 

  129. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).

    Article  ADS  Google Scholar 

  130. Haug, T., Self, C. N. & Kim, M. Large-scale quantum machine learning. Preprint at https://arxiv.org/abs/2108.01039 (2021).

  131. Zhou, Y., Zeng, P. & Liu, Z. Single-copies estimation of entanglement negativity. Phys. Rev. Lett. 125, 200502 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  132. Horodecki, P. Measuring quantum entanglement without prior state reconstruction. Phys. Rev. Lett. 90, 167901 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Carteret, H. A. Noiseless quantum circuits for the peres separability criterion. Phys. Rev. Lett. 94, 040502 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  134. Carteret, H. A. Estimating the entanglement negativity from low-order moments of the partially transposed density matrix. Preprint at https://arxiv.org/abs/1605.08751 (2016).

  135. Yu, X.-D., Imai, S. & Gühne, O. Optimal entanglement certification from moments of the partial transpose. Phys. Rev. Lett. 127, 060504 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  136. Liu, Z. et al. Detecting entanglement in quantum many-body systems via permutation moments. Preprint at https://arxiv.org/abs/2203.08391 (2022).

  137. Tran, M. C., Dakic, B., Arnault, F., Laskowski, W. & Paterek, T. Quantum entanglement from random measurements. Phys. Rev. A 92, 050301(R) (2015).

    Article  ADS  MathSciNet  Google Scholar 

  138. Tran, M. C., Dakic, B., Laskowski, W. & Paterek, T. Correlations between outcomes of random measurements. Phys. Rev. A 94, 042302 (2016).

    Article  ADS  Google Scholar 

  139. Ketterer, A., Wyderka, N. & Gühne, O. Entanglement characterization using quantum designs. Quantum 4, 325 (2020).

    Article  Google Scholar 

  140. Imai, S., Wyderka, N., Ketterer, A. & Gühne, O. Bound entanglement from randomized measurements. Phys. Rev. Lett. 126, 150501 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  141. Ketterer, A., Imai, S., Wyderka, N. & Gühne, O. Statistically significant tests of multiparticle quantum correlations based on randomized measurements. Preprint at https://arxiv.org/abs/2012.12176 (2021).

  142. Knips, L. A moment for random measurements. Quantum Views 4, 47 (2020).

    Article  Google Scholar 

  143. Leone, L., Oliviero, S. F. E. & Hamma, A. Stabilizer Rényi entropy. Phys. Rev. Lett. 128, 050402 (2022).

    Article  ADS  Google Scholar 

  144. Oliviero, S. F. E., Leone, L., Hamma, A. & Lloyd, S. Measuring magic on a quantum processor. Preprint at https://arxiv.org/abs/2204.00015 (2022).

  145. Feldman, N., Kshetrimayum, A., Eisert, J. & Goldstein, M. Entanglement estimation in tensor network states via sampling. PRX Quantum 3, 030312 (2022).

    Article  ADS  Google Scholar 

  146. Vermersch, B., Elben, A., Dalmonte, M., Cirac, J. I. & Zoller, P. Unitary n -designs via random quenches in atomic Hubbard and spin models: application to the measurement of Rényi entropies. Phys. Rev. A 97, 023604 (2018).

    Article  ADS  Google Scholar 

  147. van den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  148. Gottesman, D. The Heisenberg representation of quantum computers. Preprint at https://arxiv.org/abs/quant-ph/9807006 (1998).

  149. Hu, H.-Y., Choi, S. & You, Y.-Z. Classical shadow tomography with locally scrambled quantum dynamics. Preprint at https://arxiv.org/abs/2107.04817 (2021).

  150. Bu, K., Koh, D. E., Garcia, R. J. & Jaffe, A. Classical shadows with Pauli-invariant unitary ensembles. Preprint at https://arxiv.org/abs/2202.03272 (2022).

  151. Nakata, Y., Hirche, C., Koashi, M. & Winter, A. Efficient quantum pseudorandomness with nearly time-independent Hamiltonian dynamics. Phys. Rev. X 7, 021006 (2017).

    Google Scholar 

  152. Koenig, R. & Smolin, J. A. How to efficiently select an arbitrary Clifford group element. J. Math. Phys. 55, 122202 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  153. Notarnicola, S. et al. A randomized measurement toolbox for Rydberg quantum technologies. Preprint at https://arxiv.org/abs/2112.11046 (2021).

  154. Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Preprint at https://arxiv.org/abs/2109.06903 (2021).

  155. García-Pérez, G. et al. Learning to measure: adaptive informationally complete generalized measurements for quantum algorithms. PRX Quant. 2, 040342 (2021).

    Article  ADS  Google Scholar 

  156. Nguyen, H. C., Bönsel, J. L., Steinberg, J. & Gühne, O. Optimising shadow tomography with generalised measurements. Preprint at https://arxiv.org/abs/2205.08990 (2022).

  157. Renes, J. M., Blume-Kohout, R., Scott, A. J. & Caves, C. M. Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Scott, A. J. Tight informationally complete quantum measurements. J. Phys. A 39, 13507–13530 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. Fischer, L. E. et al. Ancilla-free implementation of generalized measurements for qubits embedded in a qudit space. Phys. Rev. Research 4, 033027 (2022).

    Article  ADS  Google Scholar 

  160. Stricker, R. et al. Experimental single-setting quantum state tomography. Preprint at https://arxiv.org/abs/2206.00019 (2022).

  161. National Academies of Sciences, Engineering, and Medicine. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States (National Academies Press, 2020); https://www.nap.edu/catalog/25613/manipulating-quantum-systems-an-assessment-of-atomic-molecular-and-optical.

  162. Naldesi, P. et al. Fermionic correlation functions from randomized measurements in programmable atomic quantum devices. Preprint at https://arxiv.org/abs/2205.00981 (2022).

  163. Struchalin, G., Zagorovskii, Y. A., Kovlakov, E., Straupe, S. & Kulik, S. Experimental estimation of quantum state properties from classical shadows. PRX Quantum 2, 010307 (2021).

    Article  Google Scholar 

  164. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article  Google Scholar 

  165. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. Adaptive Computation and Machine Learning (MIT Press, 2016); http://www.deeplearningbook.org/.

  166. Silver, D. et al. Mastering the game of go without human knowledge. Nature 550, 354–359 (2017).

    Article  ADS  Google Scholar 

  167. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.E. acknowledges funding by the German National Academy of Sciences Leopoldina under grant no. LPDS 2021-02 and by the Walter Burke Institute for Theoretical Physics at Caltech. J.P. acknowledges funding from the US Department of Energy Office of Science, Office of Advanced Scientific Computing Research (DE-NA0003525, DE-SC0020290), and the National Science Foundation (NSF) (PHY-1733907). The Institute for Quantum Information and Matter is an NSF Physics Frontiers Center. B.V. acknowledges funding from the French National Research Agency (ANR-20-CE47-0005, JCJC project QRand) and from the Austrian Science Foundation (FWF, P 32597 N). P.Z. acknowledges support by the US Air Force Office of Scientific Research (AFOSR) via IOE grant no. FA9550-19-1-7044 LASCEM, by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 817482 (PASQuanS), and by the Simons Collaboration on Ultra-Quantum Matter, which is a grant from the Simons Foundation (651440).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Peter Zoller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Barbara Terhal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elben, A., Flammia, S.T., Huang, HY. et al. The randomized measurement toolbox. Nat Rev Phys 5, 9–24 (2023). https://doi.org/10.1038/s42254-022-00535-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00535-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing