Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin

Abstract

Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates cell-intrinsic protective antioxidant responses, while the peptide hormone hepcidin maintains systemic iron homoeostasis, but is pathophysiologically decreased in haemochromatosis and β-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives bone morphogenetic protein 6 (Bmp6) expression in liver sinusoidal endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6–hepcidin response to oral and parenteral iron is impaired, and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6–hepcidin axis, improving iron homoeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in β-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to the control of systemic iron homoeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The transcription factor Nrf2 regulates Bmp6 gene expression.
Fig. 2: Iron induces oxidative stress to activate Nrf2 and upregulate Bmp6 expression.
Fig. 3: Induction of Bmp6 and hepcidin by iron is blunted in the absence of Nrf2. Nrf2 knockout mice load with more hepatic iron.
Fig. 4: Liver and LSEC mitochondrial pathology in iron-loaded Nrf2−/− mice.
Fig. 5: The small-molecule Nrf2 agonist CDDO-Im alleviates iron accumulation in Hfe knockout haemochromatosis mice.
Fig. 6: CDDO-Im alters the Bmp6–erythroferrone axis and decreases serum iron in mice with thalassaemia.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron Metabolism. Cell 168, 344–361 (2017).

    Article  CAS  Google Scholar 

  2. Ganz, T. Systemic iron homeostasis. Physiol. Rev. 93, 1721–1741 (2013).

    Article  CAS  Google Scholar 

  3. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  Google Scholar 

  4. Pietrangelo, A. Genetics, genetic testing, and management of hemochromatosis: 15 years since hepcidin. Gastroenterology 149, 1240–1251.e4 (2015).

    Article  Google Scholar 

  5. Gupta, R., Musallam, K. M., Taher, A. T. & Rivella, S. Ineffective erythropoiesis: anemia and iron overload. Hematol. Oncol. Clin. North Am. 32, 213–221 (2018).

    Article  Google Scholar 

  6. Kautz, L. et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 112, 1503–1509 (2008).

    Article  CAS  Google Scholar 

  7. Andriopoulos, B.Jr. et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 41, 482–487 (2009).

    Article  CAS  Google Scholar 

  8. Meynard, D. et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41, 478–481 (2009).

    Article  CAS  Google Scholar 

  9. Canali, S. et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 129, 405–414 (2017).

    Article  CAS  Google Scholar 

  10. Koskenkorva-Frank, T. S., Weiss, G., Koppenol, W. H. & Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 65, 1174–1194 (2013).

    Article  CAS  Google Scholar 

  11. Hershko, C. Pathogenesis and management of iron toxicity in thalassemia. Ann. N. Y. Acad. Sci. 1202, 1–9 (2010).

    Article  CAS  Google Scholar 

  12. Suzuki, T. & Yamamoto, M. Molecular basis of the Keap1–Nrf2 system.Free Radic. Biol. Med. 88, 93–100 (2015).

    Article  CAS  Google Scholar 

  13. Kobayashi, A. et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26, 221–229 (2006).

    Article  CAS  Google Scholar 

  14. Igarashi, K. & Watanabe-Matsui, M. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.Tohoku J. Exp. Med. 232, 229–253 (2014).

    Article  CAS  Google Scholar 

  15. Kautz, L. et al. BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 114, 2515–2520 (2009).

    Article  CAS  Google Scholar 

  16. Ryan, J. D., Ryan, E., Fabre, A., Lawless, M. W. & Crowe, J. Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis. Hepatology 52, 1266–1273 (2010).

    Article  Google Scholar 

  17. Moon, M. S. et al. Elevated hepatic iron activates NF-E2-related factor 2-regulated pathway in a dietary iron overload mouse model. Toxicol. Sci. 129, 74–85 (2012).

    Article  CAS  Google Scholar 

  18. Silva-Gomes, S. et al. Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J. Hepatol. 60, 354–361 (2014).

    Article  CAS  Google Scholar 

  19. Armitage, A. E. Induced disruption of the iron-regulatory hormone hepcidin inhibits acute inflammatory hypoferraemia.J. Innate Immun. 8, 517–528 (2016).

    Article  CAS  Google Scholar 

  20. Liby, K. et al. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res. 65, 4789–4798 (2005).

    Article  CAS  Google Scholar 

  21. Cleasby, A. et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE 9, e98896 (2014).

    Article  Google Scholar 

  22. Uruno, A. et al. Nrf2-mediated regulation of skeletal muscle glycogen metabolism. Mol. Cell. Biol. 36, 1655–1672 (2016).

    Article  CAS  Google Scholar 

  23. Yamamoto, T. et al. Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements. Genes Cells 11, 575–591 (2006).

    Article  CAS  Google Scholar 

  24. Reichard, J. F., Motz, G. T. & Puga, A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 35, 7074–7086 (2007).

    Article  CAS  Google Scholar 

  25. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  Google Scholar 

  26. Urrutia, P. J., Mena, N. P. & Núñez, M. T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front. Pharmacol. 5, 38 (2014).

    Article  Google Scholar 

  27. Huang, H. et al. Iron-induced generation of mitochondrial ROS depends on AMPK activity. Biometals 30, 623–628 (2017).

    Article  CAS  Google Scholar 

  28. Liang, H. L. et al. Partial attenuation of cytotoxicity and apoptosis by SOD1 in ischemic renal epithelial cells. Apoptosis 14, 1176–1189 (2009).

    Article  CAS  Google Scholar 

  29. Robb, E. L. et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic. Biol. Med. 89, 883–894 (2015).

    Article  CAS  Google Scholar 

  30. Higdon, A., Diers, A. R., Oh, J. Y., Landar, A. & Darley-Usmar, V. M. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem. J. 442, 453–464 (2012).

    Article  CAS  Google Scholar 

  31. Fazakerley, D. J. et al. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J. Biol. Chem. 293, 7315–7328 (2018).

    Article  CAS  Google Scholar 

  32. Yanagawa, T. et al. Nrf2 deficiency causes tooth decolourization due to iron transport disorder in enamel organ. Genes Cells 9, 641–651 (2004).

    Article  CAS  Google Scholar 

  33. Marro, S. et al. Heme controlsferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position −7007 of the FPN1 promoter. Haematologica 95, 1261–1268 (2010).

    Article  CAS  Google Scholar 

  34. Jenkitkasemwong, S. et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab. 22, 138–150 (2015).

    Article  CAS  Google Scholar 

  35. Lebeau, A. et al. Long-term sequelae of HFE deletion in C57BL/6 × 129/O1a mice, an animal model for hereditary haemochromatosis. Eur. J. Clin. Invest. 32, 603–612 (2002).

    Article  CAS  Google Scholar 

  36. Duarte, T. L. et al. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol. 11, 157–169 (2017).

    Article  CAS  Google Scholar 

  37. Koch, P. S. et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood 129, 415–419 (2017).

    Article  CAS  Google Scholar 

  38. Köhler, U. A. et al. Activated Nrf2 impairs liver regeneration in mice by activation of genes involved in cell-cycle control and apoptosis. Hepatology 60, 670–678 (2014).

    Article  Google Scholar 

  39. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    Article  CAS  Google Scholar 

  40. Arezes, J. et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477 (2018).

    Article  CAS  Google Scholar 

  41. Yang, B. et al. A mouse model for beta 0-thalassemia. Proc. Natl Acad. Sci. USA 92, 11608–11612 (1995).

    Article  CAS  Google Scholar 

  42. Wilkinson, N. & Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 5, 176 (2014).

    Article  Google Scholar 

  43. Sanchez, M. et al. Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 118, e168–e179 (2011).

    Article  CAS  Google Scholar 

  44. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  Google Scholar 

  45. Bhandari, S., Pereira, D. I. A., Chappell, H. F. & Drakesmith, H. Intravenous irons: from basic science to clinical practice. Pharmaceuticals (Basel) 11, E82 (2018).

    Article  Google Scholar 

  46. Brittenham, G. M. et al. Circulating non-transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: a randomized study. Am. J. Clin. Nutr. 100, 813–820 (2014).

    Article  CAS  Google Scholar 

  47. Corradini, E. et al. BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice. Gastroenterology 139, 1721–1729 (2010).

    Article  CAS  Google Scholar 

  48. Casu, C. et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood 128, 265–276 (2016).

    Article  CAS  Google Scholar 

  49. Bollong, M. J. et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 562, 600–604 (2018).

    Article  CAS  Google Scholar 

  50. Dodson, M. et al. Modulating NRF2 in disease: timing is everything.Annu. Rev. Pharmacol. Toxicol. 59, 555–575 (2019).

    Article  CAS  Google Scholar 

  51. Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).

    Article  CAS  Google Scholar 

  52. Bahram, S. et al. Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc. Natl Acad. Sci. USA 96, 13312–13317 (1999).

    Article  CAS  Google Scholar 

  53. Lesbordes-Brion, J. C. et al. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood 108, 1402–1405 (2006).

    Article  CAS  Google Scholar 

  54. Matsumura, T. et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 77, 1357–1365 (2004).

    Article  CAS  Google Scholar 

  55. Malhotra, D. et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 38, 5718–5734 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the University of Oxford Department of Biomedical Services for animal husbandry, M. Nairz (Medical University of Innsbruck) for assistance with flow cytometry and A. Townsend (Weatherall Institute of Molecular Medicine) for helpful advice and discussions. This work was supported by the UK Medical Research Council (MRC Human Immunology Unit core funding to H.D., award no. MC_UU_12010/10) and Radcliffe Department of Medicine (RDM Scholars Program to P.J.L.). The work conducted at the Instituto de Biologia Molecular e Celular was supported by FEDER funds through COMPETE and by Portuguese funds through Fundação para a Ciência e Tecnologia (grant nos. PTDC/BIM-MET/0739/2012 and SFRH/BPD/108207/2015 to T.L.D.), and the Norte 2020 Portugal Regional Operational Programme (grant no. Norte-01-0145-FEDER-000012). J.L.B. was supported by the National Institutes of Health (grant no. RO1-DK087727) and Massachusetts General Hospital (Howard Goodman Award). Work in M.P.M.’s lab is supported by the Medical Research Council UK (grant no. MC_U105663142) and by a Wellcome Trust Investigator award (no. 110159/Z/15/Z). A.M.H., D.G.S. and P.P. were funded by grants from the Canadian Institutes of Health Research (grant nos. MOP-14100 and MOP-126064).

Author information

Authors and Affiliations

Authors

Contributions

P.J.L., T.L.D., C.B.W., D.G.S., P.P., A.E.A., S.R.P. and H.D. designed the research. P.J.L., T.L.D., A.E.A., J.A., H.M., D.G.S., A.H., S.W., S.R.P., J.R.H., A.G.S., A.L.B., A.S.G., A.M., E.S., C.Y.W. and J.L.B. collected the data. P.J.L., H.D., T.L.D., D.G.S., P.P., P.K., A.E.A., S.R.P., E.S., R.C.H., M.P.M., C.Y.W., J.L.B. and G.P. analysed and interpreted the data. P.J.L. and H.D. wrote the manuscript.

Corresponding author

Correspondence to Hal Drakesmith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–10 and Supplementary Tables 1–4

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, P.J., Duarte, T.L., Arezes, J. et al. Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab 1, 519–531 (2019). https://doi.org/10.1038/s42255-019-0063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0063-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing