Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of the North Atlantic Meridional Overturning Circulation since 1980

Abstract

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the climate through its transport of heat in the North Atlantic Ocean. Decadal changes in the AMOC, whether through internal variability or anthropogenically forced weakening, therefore have wide-ranging impacts. In this Review, we synthesize the understanding of contemporary decadal variability in the AMOC, bringing together evidence from observations, ocean reanalyses, forced models and AMOC proxies. Since 1980, there is evidence for periods of strengthening and weakening, although the magnitudes of change (5–25%) are uncertain. In the subpolar North Atlantic, the AMOC strengthened until the mid-1990s and then weakened until the early 2010s, with some evidence of a strengthening thereafter; these changes are probably linked to buoyancy forcing related to the North Atlantic Oscillation. In the subtropics, there is some evidence of the AMOC strengthening from 2001 to 2005 and strong evidence of a weakening from 2005 to 2014. Such large interannual and decadal variability complicates the detection of ongoing long-term trends, but does not preclude a weakening associated with anthropogenic warming. Research priorities include developing robust and sustainable solutions for the long-term monitoring of the AMOC, observation–modelling collaborations to improve the representation of processes in the North Atlantic and better ways to distinguish anthropogenic weakening from internal variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of AMOC timescales.
Fig. 2: Timeseries of AMOC anomalies.
Fig. 3: AMOC proxy records from 1980.
Fig. 4: North Atlantic temperature and salinity trends.
Fig. 5: Past and future AMOC changes from climate models.

Similar content being viewed by others

References

  1. Trenberth, K. E., Zhang, Y., Fasullo, J. T. & Cheng, L. Observation-based estimates of global and basin ocean meridional heat transport time series. J. Clim. 32, 4567–4583 (2019).

    Article  Google Scholar 

  2. Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic Meridional Overturning Circulation response. Nat. Commun. 12, 3659 (2021).

    Article  Google Scholar 

  3. Zhang, R. et al. A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and associated climate impacts. Rev. Geophys. 57, 316–375 (2019).

    Article  Google Scholar 

  4. Sarmiento, J. L. & Le Quere, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).

    Article  Google Scholar 

  5. McCarthy, G. D. et al. Measuring the Atlantic Meridional Overturning Circulation at 26°N. Prog. Oceanogr. 130, 91–111 (2015).

    Article  Google Scholar 

  6. Danabasoglu, G. On multidecadal variability of the Atlantic Meridional Overturning Circulation in the community climate system model version 3. J. Clim. 21, 5524–5544 (2008).

    Article  Google Scholar 

  7. Ba, J. et al. A multi-model comparison of Atlantic Multidecadal Variability. Clim. Dyn. 43, 2333–2348 (2014).

    Article  Google Scholar 

  8. Wills, R. C., Armour, K. C., Battisti, D. S. & Hartmann, D. L. Ocean–atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. J. Clim. 32, 251–272 (2019).

    Article  Google Scholar 

  9. Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic Multidecadal Variability. Nat. Geosci. 3, 688–694 (2010).

    Article  Google Scholar 

  10. Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).

    Article  Google Scholar 

  11. Collins, M. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 12 (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  12. Desbruyères, D., Mercier, H., Maze, G. & Daniault, N. Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic. Ocean Sci. 15, 809–817 (2019).

    Article  Google Scholar 

  13. Jackson, L. C. et al. The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses. J. Geophys. Res. Oceans 124, 9141–9170 (2019).

    Article  Google Scholar 

  14. Tsujino, H. et al. Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev. Discuss. 2020, 1–86 (2020).

    Google Scholar 

  15. Robson, J., Ortega, P. & Sutton, R. A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 9, 513–517 (2016).

    Article  Google Scholar 

  16. Bryden, H. L. et al. Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Clim. 33, 1677–1689 (2020).

    Article  Google Scholar 

  17. Srokosz, M. A. & Bryden, H. L. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).

    Article  Google Scholar 

  18. Smeed, D. A. et al. Observed decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci. 10, 29–38 (2014).

    Article  Google Scholar 

  19. Smeed, D. A. et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 45, 2017GL076350 (2018).

    Article  Google Scholar 

  20. Jackson, L. C., Peterson, K. A., Roberts, C. D. & Wood, R. A. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat. Geosci. 9, 518–522 (2016).

    Article  Google Scholar 

  21. Latif, M., Park, T. & Park, W. Decadal Atlantic Meridional Overturning Circulation slowing events in a climate model. Clim. Dyn. 53, 1111–1124 (2019).

    Article  Google Scholar 

  22. Fu, Y., Li, F., Karstensen, J. & Wang, C. A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s. Sci. Adv. 6, eabc7836 (2020).

    Article  Google Scholar 

  23. Danabasoglu, G., Landrum, L., Yeager, S. G. & Gent, P. R. Robust and nonrobust aspects of Atlantic Meridional Overturning Circulation variability and mechanisms in the Community Earth System Model. J. Clim. 32, 7349–7368 (2019).

    Article  Google Scholar 

  24. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Article  Google Scholar 

  25. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  Google Scholar 

  26. Caesar, L., McCarthy, G., Thornalley, J., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    Article  Google Scholar 

  27. Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    Article  Google Scholar 

  28. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 2015RG000493 (2016).

    Article  Google Scholar 

  29. Yeager, S. G. & Robson, J. I. Recent progress in understanding and predicting Atlantic decadal climate variability. Curr. Clim. Change Rep. 3, 112–127 (2017).

    Article  Google Scholar 

  30. Moat, B. I. et al. Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Sci. 16, 863–874 (2020).

    Article  Google Scholar 

  31. Kostov, Y. et al. Distinct sources of interannual subtropical and subpolar Atlantic overturning variability. Nat. Geosci. 14, 491–495 (2021).

    Article  Google Scholar 

  32. Biastoch, A., Böning, C. W., Getzlaff, J., Molines, J.-M. & Madec, G. Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Clim. 21, 6599–6615 (2008).

    Article  Google Scholar 

  33. Yeager, S. & Danabasoglu, G. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 27, 3222–3247 (2014).

    Article  Google Scholar 

  34. Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).

    Article  Google Scholar 

  35. Larson, S. M., Buckley, M. W. & Clement, A. C. Extracting the buoyancy-driven Atlantic meridional overturning circulation. J. Clim. 33, 4697–4714 (2020).

    Article  Google Scholar 

  36. Baehr, J., Hirschi, J., Beismann, J.-O. & Marotzke, J. Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J. Mar. Res. 62, 283–312 (2004).

    Article  Google Scholar 

  37. Clément, L., Frajka-Williams, E., Szuts, Z. B. & Cunningham, S. A. Vertical structure of eddies and Rossby waves, and their effect on the Atlantic Meridional Overturning Circulation at 26.5°N. J. Geophys. Res. Oceans 119, 6479–6498 (2014).

    Article  Google Scholar 

  38. Polo, I., Robson, J., Sutton, R. & Bamaseda, M. The importance of wind and buoyancy forcing of the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr. 44, 2387–2408 (2014).

    Article  Google Scholar 

  39. Buckley, M. W., Ferreira, D., Campin, J.-M., Marshall, J. & Tulloch, R. On the relationship between decadal buoyancy anomalies and variability of the Atlantic Meridional Overturning Circulation. J. Clim. 25, 8009–8030 (2012).

    Article  Google Scholar 

  40. Bingham, R., Hughes, C., Roussenov, V. & Williams, R. Meridional coherence of the North Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 34, L23606 (2007).

    Article  Google Scholar 

  41. Mielke, C., Frajka-Williams, E. & Baehr, J. Observed and simulated variability of the AMOC at 26°N and 41°N. Geophys. Res. Lett. 40, 1159–1164 (2013).

    Article  Google Scholar 

  42. Wunsch, C. & Heimbach, P. Two decades of the Atlantic Meridional Overturning Circulation: anatomy, variations, extremes, prediction, and overcoming its limitations. J. Clim. 26, 7167–7186 (2013).

    Article  Google Scholar 

  43. Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans 125, e2019JC015838 (2020).

    Article  Google Scholar 

  44. Lozier, M., Roussenov, V., Reed, M. & Williams, R. Opposing decadal changes for the North Atlantic Meridional Overturning Circulation. Nat. Geosci. 3, 728–734 (2010).

    Article  Google Scholar 

  45. Groeskamp, S. et al. The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci. 11, 271–305 (2019).

    Article  Google Scholar 

  46. Xu, X., Rhines, P. & Chassignet, E. On mapping the diapycnal water mass transformation of the upper North Atlantic Ocean. J. Phys. Oceanogr. 48, 2233–2258 (2018).

    Article  Google Scholar 

  47. Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A. & Funk, A. Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett. 33, 2006GL026906 (2006).

    Article  Google Scholar 

  48. Robson, J., Sutton, R., Lohmann, K., Smith, D. & Palmer, M. D. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Clim. 25, 4116–4134 (2012).

    Article  Google Scholar 

  49. Delworth, T. L. & Zeng, F. The impact of the North Atlantic oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Clim. 29, 941–962 (2016).

    Article  Google Scholar 

  50. Kim, W. M., Yeager, S. & Danabasoglu, G. Atlantic Multidecadal Variability and associated climate impacts initiated by ocean thermohaline dynamics. J. Clim. 33, 1317–1334 (2019).

    Article  Google Scholar 

  51. Delworth, T., Manabe, S. & Stouffer, R. J. Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Clim. 6, 1993–2011 (1993).

    Article  Google Scholar 

  52. Kwon, Y.-O. & Frankignoul, C. Stochastically-driven multidecadal variability of the Atlantic Meridional Overturning Circulation in CCSM3. Clim. Dyn. 38, 859–876 (2012).

    Article  Google Scholar 

  53. Danabasoglu, G. et al. Variability of the Atlantic Meridional Overturning Circulation in CCSM4. J. Clim. 25, 5153–5172 (2012).

    Article  Google Scholar 

  54. Roberts, C. D., Garry, F. K. & Jackson, L. C. A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic Meridional Overturning Circulation. J. Clim. 26, 9155–9174 (2013).

    Article  Google Scholar 

  55. Vage, K. et al. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci. 2, 67–72 (2009).

    Article  Google Scholar 

  56. Rhein, M. et al. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 1819–1832 (2011).

    Article  Google Scholar 

  57. Yashayaev, I. & Loder, J. W. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans 121, 8095–8114 (2016).

    Article  Google Scholar 

  58. Yashayaev, I. & Loder, J. W. Further intensification of deep convection in the Labrador sea in 2016. Geophys. Res. Lett. 44, 2016GL071668 (2017).

    Article  Google Scholar 

  59. Li, F. et al. Subpolar North Atlantic western boundary density anomalies and the meridional overturning circulation. Nat. Commun. 12, 3002 (2021).

    Article  Google Scholar 

  60. Mauritzen, C. & Häkkinen, S. On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 46, 877–894 (1999).

    Article  Google Scholar 

  61. Deshayes, J., Frankignoul, C. & Drange, H. Formation and export of deep water in the Labrador and Irminger seas in a GCM. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 510–532 (2007).

    Article  Google Scholar 

  62. Grist, J. P., Marsh, R. & Josey, S. A. On the relationship between the North Atlantic Meridional Overturning Circulation and the surface-forced overturning streamfunction. J. Clim. 22, 4989–5002 (2009).

    Article  Google Scholar 

  63. Josey, S. A., Grist, J. P. & Marsh, R. Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields. J. Geophys. Res. Oceans 114, C09022 (2009).

    Article  Google Scholar 

  64. Chafik, L. & Rossby, T. Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic seas as key to the state of the meridional overturning circulation. Geophys. Res. Lett. 46, 4799–4808 (2019).

    Article  Google Scholar 

  65. Lozier, M. S. et al. A sea change in our view of overturning in the subpolar North Atlantic. Science 363, 516 (2019).

    Article  Google Scholar 

  66. Petit, T., Lozier, M. S., Josey, S. A. & Cunningham, S. A. Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett. 47, e2020GL091028 (2020).

    Article  Google Scholar 

  67. Feucher, C., Garcia-Quintana, Y., Yashayaev, I., Hu, X. & Myers, P. G. Labrador Sea Water formation rate and its impact on the local meridional overturning circulation. J. Geophys. Res. Oceans 124, 5654–5670 (2019).

    Article  Google Scholar 

  68. Hirschi, J. J. et al. The Atlantic Meridional Overturning Circulation in high-resolution models. J. Geophys. Res. Oceans 125, e2019JC015522 (2020).

    Article  Google Scholar 

  69. Menary, M. B., Jackson, L. C. & Lozier, M. S. Reconciling the relationship between the AMOC and Labrador sea in OSNAP observations and climate models. Geophys. Res. Lett. 47, e2020GL089793 (2020).

    Article  Google Scholar 

  70. Oldenburg, D., Wills, R., Armour, K., Thompson, L. & Jackson, L. Mechanisms of low-frequency variability in North Atlantic Ocean heat transport and amoc. J. Clim. 34, 4733–4755 (2021).

    Google Scholar 

  71. Hirschi, J. J.-M. et al. Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci. 9, 805–823 (2013).

    Article  Google Scholar 

  72. Grégorio, S. et al. Intrinsic variability of the Atlantic Meridional Overturning Circulation at interannual-to-multidecadal time scales. J. Phys. Oceanogr. 45, 1929–1946 (2015).

    Article  Google Scholar 

  73. Leroux, S. et al. Intrinsic and atmospherically forced variability of the AMOC: insights from a large-ensemble ocean hindcast. J. Clim. 31, 1183–1203 (2018).

    Article  Google Scholar 

  74. Frankcombe, L. M., von der Heydt, A. & Dijkstra, H. A. North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J. Clim. 23, 3626–3638 (2010).

    Article  Google Scholar 

  75. Sévellec, F. & Fedorov, A. V. The leading, interdecadal eigenmode of the Atlantic Meridional Overturning Circulation in a realistic ocean model. J. Clim. 26, 2160–2183 (2012).

    Article  Google Scholar 

  76. Huck, T., Arzel, O. & Sévellec, F. Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr. 45, 157–173 (2014).

    Article  Google Scholar 

  77. Rahmstorf, S. & Willebrand, J. The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr. 25, 787–805 (1995).

    Article  Google Scholar 

  78. Jungclaus, J., Haak, H., Latif, M. & Mikolajewicz, U. Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Clim. 18, 4013–4031 (2005).

    Article  Google Scholar 

  79. Deshayes, J., Curry, R. & Msadek, R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic. J. Clim. 27, 3298–3317 (2014).

    Article  Google Scholar 

  80. Timmermann, A., Latif, M., Voss, R. & Groetzner, A. Northern hemispheric interdecadal variability: a coupled air–sea mode. J. Clim. 11, 1906–1931 (1998).

    Article  Google Scholar 

  81. Dima, M. & Lohmann, G. A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Clim. 20, 2706–2719 (2007).

    Article  Google Scholar 

  82. Menary, M. B., Hodson, D. L. R., Robson, J. I., Sutton, R. T. & Wood, R. A. A mechanism of internal decadal Atlantic ocean variability in a high-resolution coupled climate model. J. Clim. 28, 7764–7785 (2015).

    Article  Google Scholar 

  83. Menary, M. B. et al. Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys. Res. Lett. 42, 5926–5934 (2015).

    Article  Google Scholar 

  84. Peings, Y., Simpkins, G. & Magnusdottir, G. Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J. Geophys. Res. Atmos. 121, 2571–2592 (2016).

    Article  Google Scholar 

  85. Martin, T., Reintges, A. & Latif, M. Coupled North Atlantic subdecadal variability in CMIP5 models. J. Geophys. Res. Oceans 124, 2404–2417 (2019).

    Article  Google Scholar 

  86. Zhang, R. Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations. Geophys. Res. Lett. 37, L16703 (2010).

    Article  Google Scholar 

  87. Ortega, P. et al. Labrador sea sub-surface density as a precursor of multi-decadal variability in the North Atlantic: a multi-model study. Earth Syst. Dyn. 12, 419–438 (2021).

    Article  Google Scholar 

  88. Hodson, D. & Sutton, R. The impact of resolution on the adjustment and decadal variability of the Atlantic Meridional Overturning Circulation in a coupled climate model. Clim. Dyn. 39, 3057–3073 (2012).

    Article  Google Scholar 

  89. Getzlaff, J., Böning, C., Eden, C. & Biastoch, A. Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett. 32, L09602 (2005).

    Article  Google Scholar 

  90. Bower, A. S., Lozier, M. S., Gary, S. F. & Böning, C. W. Interior pathways of the North Atlantic Meridional Overturning Circulation. Nature 459, 243–247 (2009).

    Article  Google Scholar 

  91. Gary, S. F., Lozier, M. S., Biastoch, A. & Böning, C. W. Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett. 39, L24606 (2012).

    Article  Google Scholar 

  92. Rhein, M., Kieke, D. & Steinfeldt, R. Advection of North Atlantic deep water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120, 2471–2487 (2015).

    Article  Google Scholar 

  93. Zou, S. & Lozier, M. S. Breaking the linkage between Labrador Sea Water production and its advective export to the subtropical gyre. J. Phys. Oceanogr. 46, 2169–2182 (2016).

    Article  Google Scholar 

  94. Li, F. et al. Local and downstream relationships between Labrador Sea Water volume and North Atlantic Meridional Overturning Circulation variability. J. Clim. 32, 3883–3898 (2019).

    Article  Google Scholar 

  95. Bryden, H. L., Longworth, H. R. & Cunningham, S. A. Slowing of the Atlantic Meridional Overturning Circulation at 25°N. Nature 438, 655–657 (2005).

    Article  Google Scholar 

  96. Mercier, H. et al. Variability of the meridional overturning circulation at the Greenland–Portugal OVIDE section from 1993 to 2010. Prog. Oceanogr. 132, 250–261 (2015).

    Article  Google Scholar 

  97. Kanzow, T. et al. Seasonal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Clim. 23, 5678–5698 (2010).

    Article  Google Scholar 

  98. Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation observed by the RAPID-MOCHA-WBTS array at 26N from 2004 to 2020 (v2020.1) BODC https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444 (2021).

    Article  Google Scholar 

  99. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  100. Willis, J. K. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett. 37, L06602 (2010).

    Article  Google Scholar 

  101. Frajka-Williams, E. Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett. 42, 2015GL063220 (2015).

    Article  Google Scholar 

  102. Sanchez-Franks, A., Frajka-Williams, E., Moat, B. I. & Smeed, D. A. A dynamically based method for estimating the Atlantic Meridional Overturning Circulation at 26°N from satellite altimetry. Ocean Sci. 17, 1321–1340 (2021).

    Article  Google Scholar 

  103. WALIN, G. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34, 187–195 (1982).

    Article  Google Scholar 

  104. Marsh, R., Josey, S. A., de Nurser, A. J. G., Cuevas, B. A. & Coward, A. C. Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci. 1, 127–144 (2005).

    Article  Google Scholar 

  105. Large, W. G. & Yeager, S. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33, 341–364 (2009).

    Article  Google Scholar 

  106. Tsujino, H. et al. JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model. 130, 79–139 (2018).

    Article  Google Scholar 

  107. Storto, A. et al. Ocean reanalyses: recent advances and unsolved challenges. Front. Mar. Sci. 6, 418 (2019).

    Article  Google Scholar 

  108. Fox-Kemper, B. et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 6, 65 (2019).

    Article  Google Scholar 

  109. Chassignet, E. P. et al. Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project Phase 2 (OMIP-2). Geosci. Model Dev. 13, 4595–4637 (2020).

    Article  Google Scholar 

  110. Biastoch, A. et al. Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X. Ocean Sci. 17, 1177–1211 (2021).

    Article  Google Scholar 

  111. Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model. 73, 76–107 (2014).

    Article  Google Scholar 

  112. Danabasoglu, G. et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016).

    Article  Google Scholar 

  113. Blaker, A. et al. Historical analogues of the recent extreme minima observed in the Atlantic Meridional Overturning Circulation at 26°N. Clim. Dyn. 44, 457–473 (2015).

    Article  Google Scholar 

  114. Griffies, S. M. et al. Coordinated ocean-ice reference experiments (COREs). Ocean Model. 26, 1–46 (2009).

    Article  Google Scholar 

  115. Behrens, E., Biastoch, A. & Böning, C. W. Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing. Ocean Model. 69, 39–49 (2013).

    Article  Google Scholar 

  116. Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Chang. 6, 145–153 (2016).

    Article  Google Scholar 

  117. Karspeck, A. R. et al. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn. 49, 957–982 (2015).

    Article  Google Scholar 

  118. Roberts, C. D. & Palmer, M. D. Detectability of changes to the Atlantic Meridional Overturning Circulation in the Hadley Centre climate models. Clim. Dyn. 39, 2533–2546 (2012).

    Article  Google Scholar 

  119. Jackson, L. & Wood, R. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).

    Article  Google Scholar 

  120. Latif, M. et al. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17, 1605–1614 (2004).

    Article  Google Scholar 

  121. Msadek, R., Dixon, K. W., Delworth, T. L. & Hurlin, W. Assessing the predictability of the Atlantic Meridional Overturning Circulation and associated fingerprints. Geophys. Res. Lett. 37, L19608 (2010).

    Google Scholar 

  122. Zhang, L. & Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic Meridional Overturning Circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013).

    Article  Google Scholar 

  123. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 5, 475–480 (2015).

    Article  Google Scholar 

  124. Robson, J., Hodson, D., Hawkins, E. & Sutton, R. Atlantic overturning in decline? Nat. Geosci. 7, 2–3 (2013).

    Article  Google Scholar 

  125. McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P. & Smeed, D. A. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015).

    Article  Google Scholar 

  126. Diabaté, S. T. et al. Western boundary circulation and coastal sea-level variability in northern hemisphere oceans. Ocean Sci. 17, 1449–1471 (2021).

    Article  Google Scholar 

  127. Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article  Google Scholar 

  128. Zantopp, R., Fischer, J., Visbeck, M. & Karstensen, J. From interannual to decadal: 17 years of boundary current transports at the exit of the Labrador Sea. J. Geophys. Res. Oceans 122, 1724–1748 (2017).

    Article  Google Scholar 

  129. Handmann, P. et al. The deep western boundary current in the Labrador Sea from observations and a high-resolution model. J. Geophys. Res. Oceans 123, 2829–2850 (2018).

    Article  Google Scholar 

  130. Osterhus, S. et al. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15, 379–399 (2019).

    Article  Google Scholar 

  131. Delworth, T. L. & Dixon, K. W. Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett. 33, L02606 (2006).

    Article  Google Scholar 

  132. Robson, J. et al. Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. Int. J. Climatol. 38, 5050–5076 (2018).

    Article  Google Scholar 

  133. Holliday, N. et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun. 11, 585 (2020).

    Article  Google Scholar 

  134. Rühs, S. et al. Changing spatial patterns of deep convection in the subpolar North Atlantic. J. Geophys. Res. Oceans 126, e2021JC017245 (2021).

    Article  Google Scholar 

  135. Häkkinen, S. A simulation of thermohaline effects of a great salinity anomaly. J. Clim. 12, 1781–1795 (1999).

    Article  Google Scholar 

  136. Haak, H., Jungclaus, J., Mikolajewicz, U. & Latif, M. Formation and propagation of great salinity anomalies. Geophys. Res. Lett. 30, 1473 (2003).

    Article  Google Scholar 

  137. Kim, W. M., Yeager, S. & Danabasoglu, G. Revisiting the causal connection between the great salinity anomaly of the 1970s and the shutdown of Labrador Sea deep convection. J. Clim. 34, 675–696 (2021).

    Article  Google Scholar 

  138. Chen, X. & Tung, K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 559, 387–391 (2018).

    Article  Google Scholar 

  139. Roberts, C. D., Jackson, L. & McNeall, D. Is the 2004–2012 reduction of the Atlantic Meridional Overturning Circulation significant? Geophys. Res. Lett. 41, 3204–3210 (2014).

    Article  Google Scholar 

  140. McCarthy, G. et al. Observed interannual variability of the Atlantic MOC at 26.5°N. Geophys. Res. Lett. 39, L19609 (2012).

    Article  Google Scholar 

  141. Roberts, C. D. et al. Atmosphere drives recent interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Geophys. Res. Lett. 40, 5164–5170 (2013).

    Article  Google Scholar 

  142. Zhao, J. & Johns, W. Wind-forced interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Geophys. Res. Oceans 119, 2403–2419 (2014).

    Article  Google Scholar 

  143. Frajka-Williams, E., Lankhorst, M., Koelling, J. & Send, U. Coherent circulation changes in the deep North Atlantic from 16°N and 26°N transport arrays. J. Geophys. Res. Oceans 123, 3427–3443 (2018).

    Article  Google Scholar 

  144. Piecuch, C. G., Ponte, R. M., Little, C. M., Buckley, M. W. & Fukumori, I. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. Oceans 122, 7181–7197 (2017).

    Article  Google Scholar 

  145. Tesdal, J.-E. & Haine, T. W. N. Dominant terms in the freshwater and heat budgets of the subpolar North Atlantic ocean and Nordic seas from 1992 to 2015. J. Geophys. Res. Oceans 125, e2020JC016435 (2020).

    Article  Google Scholar 

  146. Zhang, R. Coherent surface–subsurface fingerprint of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 35, L20705+ (2008).

    Article  Google Scholar 

  147. Zhang, J. & Zhang, R. On the evolution of Atlantic Meridional Overturning Circulation fingerprint and implications for decadal predictability in the North Atlantic. Geophys. Res. Lett. 42, 5419–5426 (2015).

    Article  Google Scholar 

  148. Josey, S. A. et al. The recent Atlantic cold anomaly: causes, consequences, and related phenomena. Annu. Rev. Mar. Sci. 10, 475–501 (2018).

    Article  Google Scholar 

  149. Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic ocean since 2016. Commun. Earth Environ. 2, 48 (2021).

    Article  Google Scholar 

  150. Moat, B. et al. Insights into decadal North Atlantic sea surface temperature and ocean heat content variability from an eddy-permitting coupled climate model. J. Clim. 32, 6137–6149 (2019).

    Article  Google Scholar 

  151. Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 320–324 (2015).

    Article  Google Scholar 

  152. Cane, M. A., Clement, A. C., Murphy, L. N. & Bellomo, K. Low-pass filtering, heat flux, and Atlantic Multidecadal Variability. J. Clim. 30, 7529–7553 (2017).

    Article  Google Scholar 

  153. Murphy, L. N., Bellomo, K., Cane, M. & Clement, A. The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett. 44, 2472–2480 (2017).

    Article  Google Scholar 

  154. Yan, X., Zhang, R. & Knutson, T. R. Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett. 45, 4319–4328 (2018).

    Article  Google Scholar 

  155. Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).

    Article  Google Scholar 

  156. Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the inter-tropical convergence zone. Clim. Dyn. 42, 1967–1979 (2014).

    Article  Google Scholar 

  157. Sévellec, F., Fedorov, A. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 7, 604–610 (2017).

    Article  Google Scholar 

  158. Hassan, T., Allen, R. J., Liu, W. & Randles, C. A. Anthropogenic aerosol forcing of the Atlantic Meridional Overturning Circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. 21, 5821–5846 (2021).

    Article  Google Scholar 

  159. Menary, M. B. et al. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. J. Geophys. Res. Oceans 118, 2087–2096 (2013).

    Article  Google Scholar 

  160. Smith, C. J. et al. Energy budget constraints on the time history of aerosol forcing and climate sensitivity. J. Geophys. Res. Atmos. 126, e2020JD033622 (2021).

    Article  Google Scholar 

  161. Wang, C., Soden, B. J., Yang, W. & Vecchi, G. A. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett. 48, e2020GL091024 (2021).

    Google Scholar 

  162. Zhu, C. & Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Chang. 10, 998–1003 (2020).

    Article  Google Scholar 

  163. Piecuch, C. Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nat. Commun. 11, 3973 (2020).

    Article  Google Scholar 

  164. Moffa-Sánchez, P. et al. Variability in the northern North Atlantic and Arctic oceans across the last two millennia: a review. Paleoceanogr. Paleoclimatol. 34, 1399–1436 (2019).

    Article  Google Scholar 

  165. Little, C. M., Zhao, M. & Buckley, M. W. Do surface temperature indices reflect centennial-timescale trends in Atlantic Meridional Overturning Circulation strength? Geophys. Res. Lett. 47, e2020GL090888 (2020).

    Article  Google Scholar 

  166. Boning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

    Article  Google Scholar 

  167. van den Berk, J. & Drijfhout, S. A realistic freshwater forcing protocol for ocean-coupled climate models. Ocean Model. 81, 36–48 (2014).

    Article  Google Scholar 

  168. Reintges, A., Martin, T., Latif, M. & Keenlyside, N. Uncertainty in twenty-first century projections of the Atlantic Meridional Overturning Circulation in CMIP3 and CMIP5 models. Clim. Dyn. 49, 1495–1511 (2016).

    Article  Google Scholar 

  169. Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    Article  Google Scholar 

  170. Jackson, L. C. et al. Impact of ocean resolution and mean state on the rate of AMOC weakening. Clim. Dyn. 55, 1711–1732 (2020).

    Article  Google Scholar 

  171. Chang, P. et al. An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst. 12, e2020MS002298 (2020).

    Article  Google Scholar 

  172. Pohlmann, H. et al. Predictability of the mid-latitude Atlantic Meridional Overturning Circulation in a multi-model system. Clim. Dyn. 41, 775–785 (2013).

    Article  Google Scholar 

  173. World Meteorological Organization. WMO lead centre for annual-to-decadal climate prediction (WMO, 2020).

  174. Yeager, S. The abyssal origins of North Atlantic decadal predictability. Clim. Dyn. 55, 2253–2271 (2020).

    Article  Google Scholar 

  175. Worthington, E. L. et al. A 30-year reconstruction of the Atlantic Meridional Overturning Circulation shows no decline. Ocean Sci. 17, 285–299 (2021).

    Article  Google Scholar 

  176. Cunningham, S. A. et al. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett. 40, 2013GL058464 (2013).

    Article  Google Scholar 

  177. Zou, S., Lozier, M., Li, F., Abernathy, R. & Jackson, L. Density-compensated overturning in the Labrador Sea. Nature. Geosci. 13, 121–126 (2020).

    Article  Google Scholar 

  178. Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6, 260 (2019).

    Article  Google Scholar 

  179. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. 118, 6704–6716 (2013).

    Article  Google Scholar 

  180. Spall, M. A. Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr. 34, 1197–1213 (2004).

    Article  Google Scholar 

  181. Sayol, J.-M., Dijkstra, H. & Katsman, C. Seasonal and regional variations of sinking in the subpolar North Atlantic from a high-resolution ocean model. Ocean Sci. 15, 1033–1053 (2019).

    Article  Google Scholar 

  182. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

L.C.J. was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (grant GA01101). M.W.B. gratefully acknowledges support from the NOAA ESS Program (grant NA20OAR4310396) and the NASA Physical Oceanography Program (grant 80NSSC20K0823). J.R. was supported by NERC through NCAS, and through the NERC ACSIS project (grant NE/N018001/1), and the UKRI-NERC WISHBONE (grant NE/T013516/1) and SNAP-DRAGON (grant NE/T013494/1) projects. E.F.-W. and B.M. were supported by the UK Natural Environment Research Council RAPID-AMOC programme at 26.5° N. B.M. was also supported by the European Union Horizon 2020 research and innovation programme BLUE-ACTION (grant 727852). The authors thank H. Mercier, A. Sanchez-Franks and G. McCarthy for providing updated time series for the AMOC at A25-OVIDE, AMOC at 26.5° N and a sea-level proxy, respectively.

Author information

Authors and Affiliations

Authors

Contributions

L.C.J. led the writing, coordinated the contributions and made the figures. All authors discussed the content and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Laura C. Jackson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, L.C., Biastoch, A., Buckley, M.W. et al. The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat Rev Earth Environ 3, 241–254 (2022). https://doi.org/10.1038/s43017-022-00263-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00263-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing