Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Blood–brain barrier link to human cognitive impairment and Alzheimer’s disease

Abstract

Vascular dysfunction is frequently observed in disorders associated with cognitive impairment, dementia and Alzheimer’s disease (AD). Recent advances in neuroimaging and fluid biomarkers suggest that vascular dysfunction is not an innocent bystander only accompanying neuronal dysfunction. Loss of cerebrovascular integrity, often referred to as breakdown of the blood–brain barrier (BBB), was recently shown to be an early biomarker of human cognitive dysfunction and possibly an underlying mechanism of age-related cognitive decline. Damage to the BBB may initiate or further invoke a range of tissue injuries, causing synaptic and neuronal dysfunction and cognitive impairment that may contribute to AD. Therefore, better understanding of how vascular dysfunction caused by BBB breakdown interacts with amyloid beta and tau AD biomarkers to confer cognitive impairment may lead to new ways of thinking about pathogenesis and possibly treatment and prevention of early cognitive impairment, dementia and AD, for which we still do not have effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The BBB and associated cell types.
Fig. 2: The ATv(N) matrix.

Similar content being viewed by others

References

  1. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaufer, D. & Friedman, A. Damage to a protective shield around the brain may lead to Alzheimer’s and other diseases. Scientific American 43–47 (May 2021).

  4. Lochhead, J. J., Yang, J., Ronaldson, P. T. & Davis, T. P. Structure, function, and regulation of the blood–brain barrier tight junction in central nervous system disorders. Front. Physiol. 11, 914 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banks, W. A., Reed, M. J., Logsdon, A. F., Rhea, E. M. & Erickson, M. A. Healthy aging and the blood–brain barrier. Nat. Aging 1, 243–254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, A. C. et al. A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441262 (2021). This study identified a human atlas of brain vasculature with cell-specific gene expression datasets in BBB endothelial cells, mural cell pericytes and other vascular-associated cell types.

  7. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018). This study identified a mouse atlas of brain vasculature with cell-specific gene expression datasets in BBB endothelial cells, mural cell pericytes and other vascular-associated cell types.

    Article  CAS  PubMed  Google Scholar 

  8. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Mishra, A. et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19, 1619–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rungta, R. L., Chaigneau, E., Osmanski, B. F. & Charpak, S. Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99, 362–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nortley, R. et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365, eaav9518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berthiaume, A. A., Hartmann, D. A., Majesky, M. W., Bhat, N. R. & Shih, A. Y. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front. Aging Neurosci. 10, 210 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Alakbarzade, V. et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 47, 814–817 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Guemez-Gamboa, A. et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47, 809–813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henshall, T. L. et al. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler. Thromb. Vasc. Biol. 35, 409–420 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015). Using DCE-MRI, this study demonstrated that BBB breakdown in the hippocampus occurs during normal aging in humans and is accelerated in individuals with MCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019). Using a CSF biomarker of BBB-associated mural cell pericytes (sPDGFRβ) and DCE-MRI, this study showed that individuals with early cognitive dysfunction develop brain capillary damage and BBB breakdown in the hippocampus irrespective of Alzheimer’s Aβ and tau biomarker changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shams, S. et al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study. Am. J. Neuroradiol. 36, 661–666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thrippleton, M. J. et al. Quantifying blood–brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement. 15, 840–858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yates, P. A. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82, 1266–1273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wardlaw, J. M., Smith, C. & Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 18, 684–696 (2019).

    Article  PubMed  Google Scholar 

  29. Jack, C. R. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Caserta, M. T., Caccioppo, D., Lapin, G. D., Ragin, A. & Groothuis, D. R. Blood–brain barrier integrity in Alzheimer’s disease patients and elderly control subjects. J. Neuropsychiatry Clin. Neurosci. 10, 78–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Dysken, M. W., Nelson, M. J., Hoover, K. M., Kuskowski, M. & McGeachie, R. Rapid dynamic CT scanning in primary degenerative dementia and age-matched controls. Biol. Psychiatry 28, 425–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Schlageter, N. L., Carson, R. E. & Rapoport, S. I. Examination of blood–brain barrier permeability in dementia of the Alzheimer type with [68Ga]EDTA and positron emission tomography. J. Cereb. Blood Flow Metab. 7, 1–8 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, H., Golob, E. J. & Su, M. Y. Vascular volume and blood–brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J. Magn. Reson. Imaging 24, 695–700 (2006).

    Article  PubMed  Google Scholar 

  34. Ha, I. H. et al. Regional differences in blood–brain barrier permeability in cognitively normal elderly subjects: a dynamic contrast-enhanced MRI-based study. Korean J. Radiol. 22, 1152–1162 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Montagne, A. et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020). This study found that individuals bearing APOE4 (ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and the medial temporal lobe and that high baseline levels of the BBB pericyte injury biomarker sPDGFRβ in CSF predict future cognitive decline in APOE4 carriers but not in non-carriers independently of AD pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montagne, A. et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood–brain barrier breakdown in the hippocampus and mild cognitive impairment. Alzheimers Dement. 15, 1568–1575 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moon, W.-J. et al. Hippocampal blood–brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J. Cereb. Blood Flow Metab. 41, 1351–1361 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Verheggen, I. C. M. et al. Increase in blood–brain barrier leakage in healthy, older adults. GeroScience 42, 1183–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verheggen, I. C. M. et al. Imaging the role of blood–brain barrier disruption in normal cognitive ageing. GeroScience 42, 1751–1764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, Y. et al. The relationship between blood–brain barrier permeability and enlarged perivascular spaces: a cross-sectional study. Clin. Interv. Aging 14, 871–878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freeze, W. M. et al. White matter hyperintensities mediate the association between blood–brain barrier leakage and information processing speed. Neurobiol. Aging 85, 113–122 (2020).

    Article  PubMed  Google Scholar 

  42. Li, M., Li, Y., Zuo, L., Hu, W. & Jiang, T. Increase of blood–brain barrier leakage is related to cognitive decline in vascular mild cognitive impairment. BMC Neurol. 21, 159 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Milikovsky, D. Z. et al. Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood–brain barrier dysfunction. Sci. Transl. Med. 11, eaaw8954 (2019). This study identified paroxysmal slow-wave events as an electroencephalogram manifestation of nonconvulsive seizures in patients with AD and suggested that BBB pathology is an underlying mechanism and a promising therapeutic target.

    Article  PubMed  Google Scholar 

  44. van De Haar, H. J. et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016). Using DCE-MRI, this study showed BBB breakdown in the cortex, white matter and some deep grey matter regions during early stages of AD.

    Article  PubMed  Google Scholar 

  45. van de Haar, H. J. et al. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol. Aging 45, 190–196 (2016).

    Article  PubMed  Google Scholar 

  46. van De Haar, H. J. et al. Subtle blood–brain barrier leakage rate and spatial extent: considerations for dynamic contrast‐enhanced MRI. Med. Phys. 44, 4112–4125 (2017).

    Article  PubMed  Google Scholar 

  47. Kerkhofs, D. et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study. GeroScience 43, 1643–1652 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shao, X. et al. Comparison between blood–brain barrier water exchange rate and permeability to gadolinium-based contrast agent in an elderly cohort. Front. Neurosci. 14, 571480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Uchida, Y. et al. Iron leakage owing to blood–brain barrier disruption in small vessel disease CADASIL. Neurology 95, e1188–e1198 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, S. M. et al. Blood–brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 92, e1669–e1677 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, C. E. et al. Blood–brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging. Brain Imaging Behav. 13, 389–395 (2019).

    Article  PubMed  Google Scholar 

  52. Wardlaw, J. M. et al. Blood–brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimers Dement. 13, 634–643 (2017).

    Article  PubMed Central  Google Scholar 

  53. Rosenberg, G. A. et al. Validation of biomarkers in subcortical ischaemic vascular disease of the Binswanger type: approach to targeted treatment trials. J. Neurol. Neurosurg. Psychiatry 86, 1324–1330 (2015).

    Article  PubMed  Google Scholar 

  54. Al-Bachari, S., Naish, J. H., Parker, G. J. M., Emsley, H. C. A. & Parkes, L. M. Blood–brain barrier leakage is increased in Parkinsonas disease. Front. Physiol. 11, 593026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Drouin-Ouellet, J. et al. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann. Neurol. 78, 160–177 (2015).

    Article  PubMed  Google Scholar 

  56. Senatorov, V. V. et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 11, eaaw8283 (2019). This study identified dysfunction in the neurovascular unit and the BBB as one of the earliest triggers of neurological aging and demonstrated that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.

    Article  CAS  PubMed  Google Scholar 

  57. Barnes, S. R. et al. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood–brain barrier permeability using dynamic contrast-enhanced MRI. Magn. Reson. Med. 75, 1967–1977 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Sweeney, M. D. et al. A novel sensitive assay for detection of a biomarker of pericyte injury in cerebrospinal fluid. Alzheimers Dement. 16, 821–830 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. Proc. Natl Acad. Sci. USA 115, 1192–1197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, L. et al. Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat. Neurosci. 23, 1079–1089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan, C. et al. Diagnostic values of cerebrospinal fluid t-tau and Aβ42 using meso scale discovery assays for Alzheimer’s disease. J. Alzheimers Dis. 45, 709–719 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stanciu, C., Trifan, A., Muzica, C. & Sfarti, C. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin. Pharmacother. 20, 379–384 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Heringa, S. M. et al. Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer’s disease. J. Alzheimers Dis. 38, 211–221 (2014).

    Article  PubMed  Google Scholar 

  65. Zonneveld, H. I. et al. Prevalence of cortical superficial siderosis in a memory clinic population. Neurology 82, 698–704 (2014).

    Article  PubMed  Google Scholar 

  66. Poliakova, T., Levin, O., Arablinskiy, A., Vasenina, E. & Zerr, I. Cerebral microbleeds in early Alzheimer’s disease. J. Neurol. 263, 1961–1968 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Barisano, G. et al. Clinical 7 T MRI: are we there yet? A review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 92, 20180492 (2019).

    Article  PubMed  Google Scholar 

  68. Brundel, M. et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease. J. Alzheimers Dis. 31, 259–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Akoudad, S. et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 73, 934–943 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nakamori, M. et al. Lobar microbleeds are associated with cognitive impairment in patients with lacunar infarction. Sci. Rep. 10, 16410 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Toth, L. et al. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 43, 125–136 (2021).

    Article  PubMed  Google Scholar 

  72. Chai, A. B., Leung, G. K. F., Callaghan, R. & Gelissen, I. C. P‐glycoprotein: a role in the export of amyloid‐β in Alzheimer’s disease? FEBS J. 287, 612–625 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Deo, A. K. et al. Activity of P-glycoprotein, a β-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease. J. Nucl. Med. 55, 1106–1111 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Janelidze, S. et al. Increased blood–brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol. Aging 51, 104–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miners, J. S., Kehoe, P. G., Love, S., Zetterberg, H. & Blennow, K. CSF evidence of pericyte damage in Alzheimer’s disease is associated with markers of blood–brain barrier dysfunction and disease pathology. Alzheimers Res. Ther. 11, 81 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sweeney, M. D. et al. Vascular dysfunction—the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 15, 158–167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ghosh, M. et al. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann. Neurol. 78, 887–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Wardlaw, J. M. et al. Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Ann. Neurol. 65, 194–202 (2009).

    Article  PubMed  Google Scholar 

  80. Montagne, A. et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24, 326–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2018).

    Article  PubMed Central  Google Scholar 

  82. Wardlaw, J. M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16, 137–153 (2020).

    Article  PubMed  Google Scholar 

  83. Passiak, B. S. et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers. Neurology 92, e1309–e1321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Laveskog, A. et al. Associations of vascular risk factors and APOE genotype with perivascular spaces among community-dwelling older adults. J. Am. Heart Assoc. 9, e015229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Javierre-Petit, C. et al. Neuropathologic and cognitive correlates of enlarged perivascular spaces in a community-based cohort of older adults. Stroke 51, 2825–2833 (2020).

    Article  PubMed  Google Scholar 

  86. Sepehrband, F. et al. Volumetric distribution of perivascular space in relation to mild cognitive impairment. Neurobiol. Aging 99, 28–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Knopman, D. S., Petersen, R. C. & Jack, C. R. A brief history of ‘Alzheimer disease’: multiple meanings separated by a common name. Neurology 92, 1053–1059 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hampel, H. et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol. 17, 580–589 (2021).

    Article  PubMed  Google Scholar 

  89. Caselli, R. J. et al. Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimers Dement. 16, 512–523 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nation, D. A. et al. Neuropsychological decline improves prediction of dementia beyond Alzheimer’s disease biomarker and mild cognitive impairment diagnoses. J. Alzheimers Dis. 69, 1171–1182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Duke Han, S., Nguyen, C. P., Stricker, N. H. & Nation, D. A. Detectable neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychol. Rev. 27, 305–325 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Thomas, K. R. et al. Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. Neurology 94, e397–e406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Raja, R., Rosenberg, G. A. & Caprihan, A. MRI measurements of blood–brain barrier function in dementia: a review of recent studies. Neuropharmacology 134, 259–271 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Gulani, V., Calamante, F., Shellock, F. G., Kanal, E. & Reeder, S. B. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 16, 564–570 (2017).

    Article  PubMed  Google Scholar 

  95. Kilbourn, M. R. Small molecule PET tracers for transporter imaging. Semin. Nucl. Med. 47, 536–552 (2017).

    Article  PubMed  Google Scholar 

  96. Karikari, T. K. et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19, 422–433 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Barthélemy, N. R., Horie, K., Sato, C. & Bateman, R. J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med. 217, e20200861 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. O’Connor, A. et al. Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer’s disease: a longitudinal cohort study. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0838-x (2020).

  100. Abbasi, J. NIH consortium to study biomarkers for dementia. JAMA 317, 1614 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of B.V.Z. is supported by the National Institutes of Health (grant nos. R01AG023084, R01NS090904, R01NS034467, R01AG039452, 1R01NS100459, 5P01AG052350 and 5P50AG005142), in addition to the Alzheimer’s Association (strategic 509279 grant), the Cure Alzheimer’s Fund and the Foundation Leducq Transatlantic Network of Excellence for the Study of Perivascular Spaces in Small Vessel Disease (reference no. 16 CVD 05). The work of A.M. is supported by the UK Dementia Research Institute (MRC, Alzheimer’s Society, ARUK) and the UKRI Medical Research Council (Career Development Award MR/V032488/1). The work of J.M.W. is supported by the Fondation Leducq (16 CVD 05), the UK Dementia Research Institute (MRC, ARUK, Alzheimer’s Society), European Union Horizon 2020 (PHC-03-15, project no. 666881, ‘SVDs@Target’), the Row Fogo Centre for Research into Ageing and the Brain (AD.ROW4.35, BRO-D.FID3668413) and the Selfridges Group Foundation (UB190097). Graphical illustrations for Fig. 1 were made in part using BioRender (https://biorender.com). We apologize to those authors whose original work we were not able to cite due to the limited number of references.

Author information

Authors and Affiliations

Authors

Contributions

G.B., A.M., K.K. and B.V.Z. prepared the figures and wrote the manuscript. All authors performed literature searches, edited the text, critically read the manuscript and approved the final version for submission. B.V.Z. provided final edits to the manuscript.

Corresponding author

Correspondence to Berislav V. Zlokovic.

Ethics declarations

Competing interests

G.B., A.M., K.K. and B.V.Z. declare no competing interests related to this work. J.A.S. reports personal fees from the National Hockey League and the National Football League, outside the submitted work; J.M.W. reports grants from the UK Dementia Research Institute (MRC, Alzheimer’s Society, ARUK), grants from the Fondation Leducq, grants from EU Horizon 2020, grants from the Row Fogo Charitable Trust and grants from the Selfridges Group Foundation while conducting the study; and grants from the British Heart Foundation, grants from the Stroke Association and grants from the Wellcome Trust, outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barisano, G., Montagne, A., Kisler, K. et al. Blood–brain barrier link to human cognitive impairment and Alzheimer’s disease. Nat Cardiovasc Res 1, 108–115 (2022). https://doi.org/10.1038/s44161-021-00014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-021-00014-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing