Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Remote control of cellular immunotherapy

Abstract

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful tool for cancer treatment. However, the clinical application of CAR T cell therapy remains limited owing to on-target off-tumour toxicity and cytokine release syndrome, which can cause severe side effects. Remote and spatiotemporal control of CAR T cells could improve the safety and efficacy of CAR T cell therapy. Here, we discuss how CAR T cells can be externally controlled by combining stimuli-responsive nanotechnologies with immuno-engineering. We examine the use of different external stimuli, including light, ultrasound, magnetic fields, X-rays, electric fields and small molecules, to control the activity of CAR T cells against different malignancies and highlight the need for more efficient and biocompatible external stimuli as well as issues to be addressed to effectively treat solid tumours with CAR T cell therapy.

Key points

  • Chimeric antigen receptor (CAR) T cell therapies can be applied against various malignancies, with six CAR T cell therapies already approved by the FDA.

  • The clinical translation of CAR T cell immunotherapies, in particular against solid tumours, remains limited owing to low efficacy, potential cytotoxicity and considerable side effects, which may be addressed by precisely controlling the activation and antitumour effects of CAR T cells.

  • The combination of nanotechnologies and nano-optogenetic, chemogenetic and immuno-engineering approaches allows the remote control of CAR T cell therapies, using various external stimuli, including light, ultrasound, small molecules, magnetic energy, X-rays and electric fields.

  • Remote control strategies may prove particularly useful for the treatment of solid tumours, which are currently not susceptible to CAR T cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAR T cell-based immunotherapy and external stimuli.
Fig. 2: Light-induced and photothermally induced CAR T cell therapy.
Fig. 3: Ultrasound-stimulated and magnetic field-stimulated CAR T cell therapy.
Fig. 4: Chemogenetic control of CAR T cell therapy.

Similar content being viewed by others

References

  1. Milone, M. C. et al. Engineering-enhanced CAR T cells for improved cancer therapy. Nat. Cancer 2, 780–793 (2021).

    Article  Google Scholar 

  2. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010). This article reports one of the first applications of CAR T cell therapy in human patients.

    Article  Google Scholar 

  3. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  Google Scholar 

  4. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  Google Scholar 

  5. Chen, R., Jing, J., Siwko, S., Huang, Y. & Zhou, Y. Intelligent cell-based therapies for cancer and autoimmune disorders. Curr. Opin. Biotech. 66, 207–216 (2020).

    Article  Google Scholar 

  6. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra138 (2013).

    Article  Google Scholar 

  7. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  Google Scholar 

  8. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  Google Scholar 

  9. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra225 (2014).

    Article  Google Scholar 

  10. Neelapu, S. S. et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  Google Scholar 

  11. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  Google Scholar 

  12. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2018).

    Article  Google Scholar 

  13. Mullard, A. FDA approves first CAR T therapy. Nat. Rev. Drug Discov. 16, 669 (2017).

    Google Scholar 

  14. Mullard, A. FDA approves first BCMA-targeted CAR-T cell therapy. Nat. Rev. Drug Discov. 20, 332 (2021).

    Google Scholar 

  15. Mullard, A. FDA approves second BCMA-targeted CAR-T cell therapy. Nat. Rev. Drug Discov. 21, 249 (2022).

    Google Scholar 

  16. Tokarew, N., Ogonek, J., Endres, S., von Bergwelt-Baildon, M. & Kobold, S. Teaching an old dog new tricks: next-generation CAR T cells. Br. J. Cancer 120, 26–37 (2019).

    Article  Google Scholar 

  17. Saez-Ibañez, A. R. et al. Landscape of cancer cell therapies: trends and real-world data. Nat. Rev. Drug Discov. 21, 631–632 (2022).

    Article  Google Scholar 

  18. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    Article  Google Scholar 

  19. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  Google Scholar 

  20. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    Article  Google Scholar 

  21. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  Google Scholar 

  22. Losi, A., Gardner, K. H. & Möglich, A. Blue-light receptors for optogenetics. Chem. Rev. 118, 10659–10709 (2018).

    Article  Google Scholar 

  23. Tan, P., He, L., Huang, Y. & Zhou, Y. Optophysiology: illuminating cell physiology with optogenetics. Physiol. Rev. 102, 1263–1325 (2022). This article presents a comprehensive summary of photogenetic tools used to control cells of the immune system and host cell physiology.

    Article  Google Scholar 

  24. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). This article reports the first use of microbial opsins to photo-control neuronal activity, providing the foundation of the optogenetics field.

    Article  Google Scholar 

  25. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  Google Scholar 

  26. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  Google Scholar 

  27. Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  Google Scholar 

  28. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  Google Scholar 

  29. Tan, P., He, L., Han, G. & Zhou, Y. Optogenetic Immunomodulation: shedding light on antitumor immunity. Trends Biotechnol. 35, 215–226 (2017).

    Article  Google Scholar 

  30. Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021). This article reports the application of UCNPs as nanotransducers to enable wireless control of light-switchable CAR T cells by NIR light.

    Article  Google Scholar 

  31. Amitrano, A. M. et al. Optical control of CD8+ T cell metabolism and effector functions. Front. Immunol. 12, 666231 (2021).

    Article  Google Scholar 

  32. Kim, K.-D. et al. Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nat. Commun. 8, 15365 (2017).

    Article  Google Scholar 

  33. Xu, Y. et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc. Natl Acad. Sci. USA 111, 6371–6376 (2014).

    Article  Google Scholar 

  34. He, L. et al. Optogenetic control of non-apoptotic cell death. Adv. Sci. 8, 2100424 (2021).

    Article  Google Scholar 

  35. Tan, P., He, L. & Zhou, Y. Engineering supramolecular organizing centers for optogenetic control of innate immune responses. Adv. Biol. 5, 2000147 (2021).

    Article  Google Scholar 

  36. He, L. et al. Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering. Nat. Chem. Biol. 17, 915–923 (2021).

    Article  Google Scholar 

  37. He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife 4, e10024 (2015).

    Article  Google Scholar 

  38. Shah, S. et al. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 7, 16571–16577 (2015).

    Article  Google Scholar 

  39. Hososhima, S. et al. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 5, 16533 (2015).

    Article  Google Scholar 

  40. Ibsen, S., Tong, A., Schutt, C., Esener, S. & Chalasani, S. H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 6, 8264 (2015).

    Article  Google Scholar 

  41. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  Google Scholar 

  42. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  Google Scholar 

  43. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  Google Scholar 

  44. Zhou, X. X., Fan, L. Z., Li, P., Shen, K. & Lin, M. Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 355, 836–842 (2017).

    Article  Google Scholar 

  45. Mansouri, M. & Fussenegger, M. Synthetic biology-based optogenetic approaches to control therapeutic designer cells. Curr. Opin. Syst. Biol. 28, 100396 (2021).

    Article  Google Scholar 

  46. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  Google Scholar 

  47. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    Article  Google Scholar 

  48. Lan, T.-H., He, L., Huang, Y. & Zhou, Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet. 38, 1253–1270 (2022).

    Article  Google Scholar 

  49. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  Google Scholar 

  50. Kolar, K., Knobloch, C., Stork, H., Žnidarič, M. & Weber, W. OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol. 7, 1825–1828 (2018).

    Article  Google Scholar 

  51. Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).

    Article  Google Scholar 

  52. Crefcoeur, R. P., Yin, R., Ulm, R. & Halazonetis, T. D. Ultraviolet-B-mediated induction of protein–protein interactions in mammalian cells. Nat. Commun. 4, 1779 (2013).

    Article  Google Scholar 

  53. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Article  Google Scholar 

  54. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    Article  Google Scholar 

  55. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  Google Scholar 

  56. Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).

    Article  Google Scholar 

  57. Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).

    Article  Google Scholar 

  58. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  Google Scholar 

  59. Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article  Google Scholar 

  60. Niopek, D. et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5, 4404 (2014).

    Article  Google Scholar 

  61. Inutsuka, A., Kimizuka, N., Takanohashi, N., Yakabu, H. & Onaka, T. Visualization of a blue light transmission area in living animals using light-induced nuclear translocation of fluorescent proteins. Biochem. Biophys. Res. Commun. 522, 138–143 (2020).

    Article  Google Scholar 

  62. de Mena, L., Rizk, P. & Rincon-Limas, D. E. Bringing light to transcription: the optogenetics repertoire. Front. Genet. 9, 518 (2018).

    Article  Google Scholar 

  63. Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020). This article reports blue light-controllable expression of CAR.

    Article  Google Scholar 

  64. Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243 (2018).

    Article  Google Scholar 

  65. Carrow, J. K. et al. Photothermal modulation of human stem cells using light-responsive 2D nanomaterials. Proc. Natl Acad. Sci. USA 117, 13329–13338 (2020).

    Article  Google Scholar 

  66. Wang, Y. et al. Photothermal-responsive conjugated polymer nanoparticles for remote control of gene expression in living cells. Adv. Mater. 30, 1705418 (2018).

    Article  Google Scholar 

  67. Lyu, Y. et al. Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56, 9155–9159 (2017).

    Article  Google Scholar 

  68. Anikeeva, P. & Deisseroth, K. Photothermal genetic engineering. ACS Nano 6, 7548–7552 (2012).

    Article  Google Scholar 

  69. Huang, K., Li, Z., Lin, J., Han, G. & Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018).

    Article  Google Scholar 

  70. Zhang, Y., Wu, M., Wu, M., Zhu, J. & Zhang, X. Multifunctional carbon-based nanomaterials: applications in biomolecular imaging and therapy. ACS Omega 3, 9126–9145 (2018).

    Article  Google Scholar 

  71. Miller, I. C. et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng. 5, 1348–1359 (2021). This article reports NIR light-induced photothermal activation of heat-sensitive expression of CAR.

    Article  Google Scholar 

  72. Amin, J., Ananthan, J. & Voellmy, R. Key features of heat shock regulatory elements. Mol. Cell Biol. 8, 3761–3769 (1988).

    Google Scholar 

  73. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    Article  Google Scholar 

  74. O’Donoghue, G. P. et al. T cells selectively filter oscillatory signals on the minutes timescale. Proc. Natl Acad. Sci. USA 118, e2019285118 (2021). This article reports blue light-controllable assembly of split CAR.

    Article  Google Scholar 

  75. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  Google Scholar 

  76. Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415 (2018).

    Article  Google Scholar 

  77. Chen, B. & Wang, F. Emerging frontiers of upconversion nanoparticles. Trends Chem. 2, 427–439 (2020).

    Article  Google Scholar 

  78. Sun, L.-D., Dong, H., Zhang, P.-Z. & Yan, C.-H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 66, 619–642 (2015).

    Article  Google Scholar 

  79. Rabut, C. et al. Ultrasound technologies for imaging and modulating neural activity. Neuron 108, 93–110 (2020).

    Article  Google Scholar 

  80. Farhadi, A., Ho Gabrielle, H., Sawyer Daniel, P., Bourdeau Raymond, W. & Shapiro Mikhail, G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    Article  Google Scholar 

  81. Szablowski, J. O., Bar-Zion, A. & Shapiro, M. G. Achieving spatial and molecular specificity with ultrasound-targeted biomolecular nanotherapeutics. Acc. Chem. Res. 52, 2427–2434 (2019).

    Article  Google Scholar 

  82. Flax, S. W., Pelc, N. J., Glover, G. H., Gutmann, F. D. & McLachlan, M. Spectral characterization and attenuation measurements in ultrasound. Ultrason. Imaging 5, 95–116 (1983).

    Article  Google Scholar 

  83. Culjat, M. O., Goldenberg, D., Tewari, P. & Singh, R. S. A review of tissue substitutes for ultrasound imaging. Ultrasound Med. Biol. 36, 861–873 (2010).

    Article  Google Scholar 

  84. Guo, J., Song, X., Chen, X., Xu, M. & Ming, D. Mathematical model of ultrasound attenuation with skull thickness for transcranial-focused ultrasound. Front. Neurosci. 15, 778616 (2022).

    Article  Google Scholar 

  85. Kremkau, F. W., Barnes, R. W. & McGraw, C. P. Ultrasonic attenuation and propagation speed in normal human brain. J. Acoust. Soc. Am. 70, 29–38 (1981).

    Article  Google Scholar 

  86. Nassiri, D. K., Nicholas, D. & Hill, C. R. Attenuation of ultrasound in skeletal muscle. Ultrasonics 17, 230–232 (1979).

    Article  Google Scholar 

  87. Chivers, R. C. & Hill, C. R. Ultrasonic attenuation in human tissue. Ultrasound Med. Biol. 2, 25–29 (1975).

    Article  Google Scholar 

  88. Maresca, D. et al. Biomolecular ultrasound and sonogenetics. Annu. Rev. Chem. Biomol. Eng. 9, 229–252 (2018).

    Article  Google Scholar 

  89. Wang, S. et al. Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation. Front. Physiol. 11, 787 (2020).

    Article  Google Scholar 

  90. Kennedy, J. E., ter Haar, G. R. & Cranston, D. High intensity focused ultrasound: surgery of the future? Br. J. Radiol. 76, 590–599 (2003).

    Article  Google Scholar 

  91. Illing, R. O. et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br. J. Cancer 93, 890–895 (2005).

    Article  Google Scholar 

  92. Maloney, E. & Hwang, J. H. Emerging HIFU applications in cancer therapy. Int. J. Hyperth. 31, 302–309 (2015).

    Article  Google Scholar 

  93. Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

    Article  Google Scholar 

  94. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018). This article reports ultrasound stimulation of CAR expression through cell signalling by a mechanosensitive ion channel.

    Article  Google Scholar 

  95. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  Google Scholar 

  96. Müller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    Article  Google Scholar 

  97. Guilhon, E. et al. Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J. Gene Med. 5, 333–342 (2003).

    Article  Google Scholar 

  98. Deckers, R. et al. Image-guided, noninvasive, spatiotemporal control of gene expression. Proc. Natl Acad. Sci. USA 106, 1175–1180 (2009).

    Article  Google Scholar 

  99. Kruse, D. E., Mackanos, M. A., O’Connell-Rodwell, C. E., Contag, C. H. & Ferrara, K. W. Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo. Phys. Med. Biol. 53, 3641–3660 (2008).

    Article  Google Scholar 

  100. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    Article  Google Scholar 

  101. Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021). This article reports ultrasound-induced heat for the activation of heat shock response promoters to drive CAR expression.

    Article  Google Scholar 

  102. Abedi, M. H. et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 13, 1585 (2022).

    Article  Google Scholar 

  103. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    Article  Google Scholar 

  104. Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl Med. 12, eaax0876 (2020).

    Article  Google Scholar 

  105. Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).

    Article  Google Scholar 

  106. Zhuang, Y. & Xie, R.-J. Mechanoluminescence rebrightening the prospects of stress sensing: a review. Adv. Mater. 33, 2005925 (2021).

    Article  Google Scholar 

  107. Wu, W., Duan, Y. & Liu, B. Mechanoluminescence: quantitative pressure-brightness relationship enables new applications. Matter 2, 291–293 (2020).

    Article  Google Scholar 

  108. Wang, C. et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity. Matter 2, 181–193 (2020).

    Article  Google Scholar 

  109. Xiong, P., Peng, M. & Yang, Z. Near-infrared mechanoluminescence crystals: a review. iScience 24, 101944 (2021).

    Article  Google Scholar 

  110. Wu, X. et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl Acad. Sci. USA 116, 26332–26342 (2019).

    Article  Google Scholar 

  111. Chen, R., Romero, G., Christiansen Michael, G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015). This article reports alternating magnetic field-induced magnetothermia for wireless deep-brain neurostimulation.

    Article  Google Scholar 

  112. Formica, D. & Silvestri, S. Biological effects of exposure to magnetic resonance imaging: an overview. Biomed. Eng. Online 3, 11 (2004).

    Article  Google Scholar 

  113. Schenck, J. F. Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 87, 185–204 (2005).

    Article  Google Scholar 

  114. Joines, W. T. Frequency-dependent absorption of electromagnetic energy in biological tissue. IEEE Trans. Biomed. Eng. 31, 17–20 (1984).

    Article  Google Scholar 

  115. Sharma, P. K. & Guha, S. K. Transmission of time varying magnetic field through body tissue. J. Biol. Phys. 3, 95–102 (1975).

    Article  Google Scholar 

  116. Perica, K. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8, 2252–2260 (2014).

    Article  Google Scholar 

  117. Sanz-Ortega, L. et al. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J. Nanobiotechnol. 17, 14 (2019).

    Article  Google Scholar 

  118. Tay, A., Kunze, A., Murray, C. & Di Carlo, D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10, 2331–2341 (2016).

    Article  Google Scholar 

  119. Tay, A. & Di Carlo, D. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett. 17, 886–892 (2017).

    Article  Google Scholar 

  120. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  Google Scholar 

  121. Lee, J. et al. Magnetothermia-induced catalytic hollow nanoreactor for bioorthogonal organic synthesis in living cells. Nano Lett. 20, 6981–6988 (2020).

    Article  Google Scholar 

  122. Munshi, R. et al. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 6, e27069 (2017).

    Article  Google Scholar 

  123. Kunzler, J. E., Hsu, F. S. L. & Boyle, W. S. Magnetothermal oscillations. the oscillatory dependence of temperature on magnetic field. Phys. Rev. 128, 1084–1098 (1962).

    Article  MATH  Google Scholar 

  124. Rosenfeld, D. et al. Transgene-free remote magnetothermal regulation of adrenal hormones. Sci. Adv. 6, eaaz3734 (2020).

    Article  Google Scholar 

  125. Kosari, E. & Vafai, K. Thermal tissue damage analysis for magnetothermal neuromodulation and lesion size minimization. Brain Multiphys. 1, 100014 (2020).

    Article  Google Scholar 

  126. Aichinger, H., Dierker, J., Joite-Barfuß, S. & Säbel, M. in Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology: Physical Principles and Clinical Applications (eds Aichinger, H., Dierker, J., Joite-Barfuß, S. & Säbel, M.) 35–44 (Springer, 2004).

  127. Fan, W. et al. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv. Mater. 31, 1806381 (2019).

    Article  Google Scholar 

  128. Ahmad, M., Pratx, G., Bazalova, M. & Xing, L. X-ray luminescence and X-ray fluorescence computed tomography: new molecular imaging modalities. IEEE Access. 2, 1051–1061 (2014).

    Article  Google Scholar 

  129. Blasse, G. Scintillator materials. Chem. Mater. 6, 1465–1475 (1994).

    Article  Google Scholar 

  130. Chen, H., Rogalski, M. M. & Anker, J. N. Advances in functional X-ray imaging techniques and contrast agents. Phys. Chem. Chem. Phys. 14, 13469–13486 (2012).

    Article  Google Scholar 

  131. Kamkaew, A., Chen, F., Zhan, Y., Majewski, R. L. & Cai, W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano 10, 3918–3935 (2016).

    Article  Google Scholar 

  132. Huang, K. et al. Three-dimensional colloidal controlled growth of core–shell heterostructured persistent luminescence nanocrystals. Nano Lett. 21, 4903–4910 (2021).

    Article  Google Scholar 

  133. Huang, K. et al. Enhancing light and X-ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti-counterfeiting. Adv. Funct. Mater. 31, 2009920 (2021).

    Article  Google Scholar 

  134. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  Google Scholar 

  135. Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. & Yang, X. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem. Commun. 51, 12247–12250 (2015).

    Article  Google Scholar 

  136. Tang, Y. A., Hu, J., Elmenoufy, A. H. & Yang, X. Highly efficient FRET system capable of deep photodynamic therapy established on X-ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Appl. Mater. Interfaces 7, 12261–12269 (2015).

    Article  Google Scholar 

  137. Villa, I. et al. Functionalized scintillating nanotubes for simultaneous radio- and photodynamic therapy of cancer. ACS Appl. Mater. Interfaces 13, 12997–13008 (2021).

    Article  Google Scholar 

  138. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article  Google Scholar 

  139. Chen, H. et al. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 15, 2249–2256 (2015).

    Article  Google Scholar 

  140. Volotskova, O. et al. Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging. Small 11, 4002–4008 (2015).

    Article  Google Scholar 

  141. Osakada, Y. et al. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chem. Commun. 50, 3549–3551 (2014).

    Article  Google Scholar 

  142. Zhang, X.-D. et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 5, 8669 (2015).

    Article  Google Scholar 

  143. Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article  Google Scholar 

  144. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    Article  Google Scholar 

  145. Wu, C.-Y., Roybal Kole, T., Puchner Elias, M., Onuffer, J. & Lim Wendell, A. Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science 350, aab4077 (2015).

    Article  Google Scholar 

  146. Cho, J. H. et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat. Commun. 12, 792 (2021).

    Article  Google Scholar 

  147. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  Google Scholar 

  148. Labanieh, L. et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 185, 1745–1763.e22 (2022).

    Article  Google Scholar 

  149. Li, H. S. et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell 40, 1294–1305.e4 (2022).

    Article  Google Scholar 

  150. Chakravarti, D., Caraballo, L. D., Weinberg, B. H. & Wong, W. W. Inducible gene switches with memory in human T cells for cellular immunotherapy. ACS Synth. Biol. 8, 1744–1754 (2019).

    Article  Google Scholar 

  151. Rodgers, D. T. et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E459–E468 (2016).

    Article  Google Scholar 

  152. Peng, H. et al. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 41, 4104–4114 (2022).

    Article  Google Scholar 

  153. Zajc, C. U. et al. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl Acad. Sci. USA 117, 14926–14935 (2020).

    Article  Google Scholar 

  154. Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).

    Article  Google Scholar 

  155. Soumana, D. I., Ali, A. & Schiffer, C. A. Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem. Biol. 9, 2485–2490 (2014).

    Article  Google Scholar 

  156. Romano, K. P. et al. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog. 8, e1002832 (2012).

    Article  Google Scholar 

  157. Cao, W. et al. A reversible chemogenetic switch for chimeric antigen receptor T cells. Angew. Chem. Int. Ed. 61, e202109550 (2022).

    Google Scholar 

  158. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  Google Scholar 

  159. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  Google Scholar 

  160. Koduri, V. et al. Peptidic degron for IMiD-induced degradation of heterologous proteins. Proc. Natl Acad. Sci. USA 116, 2539–2544 (2019).

    Article  Google Scholar 

  161. Carbonneau, S. et al. An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor expression and activity. Cell Chem. Biol. 28, 802–812.e6 (2021).

    Article  Google Scholar 

  162. Jan, M. et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl Med. 13, eabb6295 (2021).

    Article  Google Scholar 

  163. Straathof, K. C. et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 105, 4247–4254 (2005).

    Article  Google Scholar 

  164. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  Google Scholar 

  165. Zhou, X. et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood 123, 3895–3905 (2014).

    Article  Google Scholar 

  166. Hoyos, V. et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24, 1160–1170 (2010).

    Article  Google Scholar 

  167. Diaconu, I. et al. Inducible Caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol. Ther. 25, 580–592 (2017).

    Article  Google Scholar 

  168. Budde, L. E. et al. Combining a CD20 chimeric antigen receptor and an inducible Caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS ONE 8, e82742 (2013).

    Article  Google Scholar 

  169. Duong, M. T. et al. Two-dimensional regulation of CAR-T cell therapy with orthogonal switches. Mol. Ther. Oncolytics 12, 124–137 (2019).

    Article  Google Scholar 

  170. Stavrou, M. et al. A rapamycin-activated Caspase 9-based suicide gene. Mol. Ther. 26, 1266–1276 (2018).

    Article  Google Scholar 

  171. Minagawa, K. et al. In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PLoS ONE 11, e0166891 (2016).

    Article  Google Scholar 

  172. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  Google Scholar 

  173. Tiberghien, P. et al. Administration of herpes simplex–thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97, 63–72 (2001).

    Article  Google Scholar 

  174. Park, S. et al. Direct control of CAR T cells through small molecule-regulated antibodies. Nat. Commun. 12, 710 (2021).

    Article  Google Scholar 

  175. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  Google Scholar 

  176. Aspuria, P.-J. et al. An orthogonal IL-2 and IL-2Rβ system drives persistence and activation of CAR T cells and clearance of bulky lymphoma. Sci. Transl Med. 13, eabg7565 (2021).

    Article  Google Scholar 

  177. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl Med. 13, eabg6986 (2021).

    Article  Google Scholar 

  178. Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

    Article  Google Scholar 

  179. Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  Google Scholar 

  180. Akhoundi, M., Mohammadi, M., Sahraei, S. S., Sheykhhasan, M. & Fayazi, N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell. Oncol. 44, 495–523 (2021).

    Article  Google Scholar 

  181. Boroojerdi, M. H., Rahbarizadeh, F., Kozani, P. S., Kamali, E. & Kozani, P. S. Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med. Oncol. 37, 100 (2020).

    Article  Google Scholar 

  182. Wang, T., Liu, S., Huang, Y. & Zhou, Y. Red-shifted optogenetics comes to the spotlight. Clin. Transl Med. 12, e807 (2022).

    Google Scholar 

  183. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  Google Scholar 

  184. Sotoudeh, M., Shirvani, S. I., Merat, S., Ahmadbeigi, N. & Naderi, M. MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A are the potent antigenic targets for CAR T cell therapy of gastric adenocarcinoma. J. Cell Biochem. 120, 5010–5017 (2019).

    Article  Google Scholar 

  185. Kozani, P. S., Kozani, P. S. & Rahbarizadeh, F. Novel antigens of CAR T cell therapy: new roads; old destination. Transl. Oncol. 14, 101079 (2021).

    Article  Google Scholar 

  186. Zhang, Q. et al. The antitumor capacity of mesothelin-CAR-T cells in targeting solid tumors in mice. Mol. Ther. Oncolytics 20, 556–568 (2021).

    Article  Google Scholar 

  187. Hou, L. et al. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics 8, 3781–3796 (2018).

    Article  Google Scholar 

  188. Saha, S. et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano 10, 10636–10651 (2016).

    Article  Google Scholar 

  189. Miao, L. et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res. 77, 719–731 (2017).

    Article  Google Scholar 

  190. Miao, L. et al. Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. J. Control. Release 217, 27–41 (2015).

    Article  Google Scholar 

  191. Peng, J. et al. Adenoviral vector for enhanced prostate cancer specific transferrin conjugated drug targeted therapy. Nano Lett. 22, 4168–4175 (2022).

    Article  Google Scholar 

  192. Zhao, Y. et al. Enhancing prostate-cancer-specific MRI by genetic amplified nanoparticle tumor homing. Adv. Mater. 31, 1900928 (2019).

    Article  Google Scholar 

  193. Li, Y., Jiang, M., Deng, Z., Zeng, S. & Hao, J. Low dose soft X-ray remotely triggered lanthanide nanovaccine for deep tissue CO gas release and activation of systemic anti-tumor immunoresponse. Adv. Sci. 8, 2004391 (2021).

    Article  Google Scholar 

  194. Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012).

    Article  Google Scholar 

  195. Chen, Q. et al. Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28, 7129–7136 (2016).

    Article  Google Scholar 

  196. Yang, G. et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017).

    Article  Google Scholar 

  197. Pellegatta, S. et al. Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: implications for CAR-T cell therapy. Sci. Transl Med. 10, eaao2731 (2018).

    Article  Google Scholar 

  198. Curran, K. J. et al. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther. 23, 769–778 (2015).

    Article  Google Scholar 

  199. Collinson-Pautz, M. R. et al. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 33, 2195–2207 (2019).

    Article  Google Scholar 

  200. Chmielewski, M., Hombach, A. A. & Abken, H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev. 257, 83–90 (2014).

    Article  Google Scholar 

  201. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993). This article reports one of the first designs of CAR T cells.

    Article  Google Scholar 

  202. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  Google Scholar 

  203. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  Google Scholar 

  204. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

    Article  Google Scholar 

  205. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

    Article  Google Scholar 

  206. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  Google Scholar 

  207. Wang, J. et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18, 712–725 (2007).

    Article  Google Scholar 

  208. Zhong, X.-S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    Article  Google Scholar 

  209. Pulè, M. A. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol. Ther. 12, 933–941 (2005).

    Article  Google Scholar 

  210. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  Google Scholar 

  211. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    Article  Google Scholar 

  212. Chinnasamy, D. et al. Local delivery of lnterleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 18, 1672–1683 (2012).

    Article  Google Scholar 

  213. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    Article  Google Scholar 

  214. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  Google Scholar 

  215. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  Google Scholar 

  216. Liu, X. et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 27, 154–157 (2017).

    Article  Google Scholar 

  217. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  Google Scholar 

  218. Klein, J. & Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 343, 702–709 (2000).

    Article  Google Scholar 

  219. Klein, J. & Sato, A. The HLA system. Second of two parts. N. Engl. J. Med. 343, 782–786 (2000).

    Article  Google Scholar 

  220. Shah, R. M. et al. T-cell receptor αβ+ and CD19+ cell–depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J. Allergy Clin. Immunol. 141, 1417–1426.e1 (2018).

    Article  Google Scholar 

  221. Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).

    Article  Google Scholar 

  222. Torikai, H. et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119, 5697–5705 (2012).

    Article  Google Scholar 

  223. Kamiya, T., Wong, D., Png, Y. T. & Campana, D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv. 2, 517–528 (2018).

    Article  Google Scholar 

  224. Georgiadis, C. et al. Long terminal repeat CRISPR-CAR-coupled “Universal” T cells mediate potent anti-leukemic effects. Mol. Ther. 26, 1215–1227 (2018).

    Article  Google Scholar 

  225. Fiorenza, S., Ritchie, D. S., Ramsey, S. D., Turtle, C. J. & Roth, J. A. Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transplant. 55, 1706–1715 (2020).

    Article  Google Scholar 

  226. Lyman, G. H., Nguyen, A., Snyder, S., Gitlin, M. & Chung, K. C. Economic evaluation of chimeric antigen receptor T-cell therapy by site of care among patients with relapsed or refractory large B-cell lymphoma. JAMA Netw. Open 3, e202072 (2020).

    Article  Google Scholar 

  227. Zhang, C., Hu, Y., Xiao, W. & Tian, Z. Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell. Mol. Immunol. 18, 2083–2100 (2021).

    Article  Google Scholar 

  228. Rezvani, K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplant. 54, 785–788 (2019).

    Article  Google Scholar 

  229. Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article  Google Scholar 

  230. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    Article  Google Scholar 

  231. Liu, S. et al. Harnessing natural killer cells to develop next-generation cellular immunotherapy. Chronic Dis. Transl Med. 8, 245–255 (2022).

    Google Scholar 

  232. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  Google Scholar 

  233. Maimon, B. E. et al. Optogenetic peripheral nerve immunogenicity. Sci. Rep. 8, 14076 (2018).

    Article  Google Scholar 

  234. Huang, K., Liu, X., Han, G. & Zhou, Y. Nano-optogenetic immunotherapy. Clin. Transl Med. 12, e1020 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01CA232017 to G.H. and Y.Z., R01CA240258 to Y.H., R01GM144986 to Y.Z., and R01EB029122 and R35GM140929 to Y. W.), the Welch Foundation (BE-1913-20220331 to Y.Z.) and the Cancer Prevention and Research Institutes of Texas (RP210070 to Y.Z.). The authors apologize to those whose primary work has not been cited here for lack of space.

Author information

Authors and Affiliations

Authors

Contributions

G.H., Y.Z. and Y.W. conceived the idea and supervised the work. K.H., Y.H., Y.Z. and G.H. drafted the initial manuscript with inputs and further editing from all other authors.

Corresponding authors

Correspondence to Yingxiao Wang, Yubin Zhou or Gang Han.

Ethics declarations

Competing interests

Y.W. is a scientific co-founder of Cell E&G and Acoustic Cell Therapy. These financial interests do not affect the design, conduct or reporting of this research. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Shu Wang, Michel Sadelain, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Liu, L., Huang, Y. et al. Remote control of cellular immunotherapy. Nat Rev Bioeng 1, 440–455 (2023). https://doi.org/10.1038/s44222-023-00042-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00042-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research