Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians

Abstract

The region of conserved synteny on mouse chromosome 11/human 17q11–q21 is known to carry a susceptibility gene(s) for intramacrophage pathogens. The region is rich in candidates including NOS2A, CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, CCR7, STAT3 and STAT5A/5B. To examine the region in man, we studied 92 multicase tuberculosis (627 individuals) and 72 multicase leprosy (372 individuals) families from Brazil. Multipoint nonparametric analysis (ALLEGRO) using 16 microsatellites shows two peaks of linkage for leprosy at D17S250 (Zlr score 2.34; P=0.01) and D17S1795 (Zlr 2.67; P=0.004) and a single peak for tuberculosis at D17S250 (Zlr 2.04; P=0.02). Combined analysis shows significant linkage (peak Zlr 3.38) at D17S250, equivalent to an allele sharing LOD score 2.48 (P=0.0004). To determine whether one or multiple genes contribute, 49 informative single nucleotide polymorphisms were typed in candidate genes. Family-based allelic association testing that was robust to family clustering demonstrated significant associations with tuberculosis susceptibility at four loci separated by intervals (NOS2A–8.4 Mb–CCL18–32.3 kb–CCL4–6.04 Mb–STAT5B) up to several Mb. Stepwise conditional logistic regression analysis using a case/pseudo-control data set showed that the four genes contributed separate main effects, consistent with a cluster of susceptibility genes across 17q11.2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Fine PEM . Immunogenetics of susceptibility to leprosy, tuberculosis, and leishmaniasis. An epidemiological perspective. Int J Leprosy 1981; 49: 437–454.

    CAS  Google Scholar 

  2. Newport MJ, Blackwell JM . Genetic susceptibility to tuberculosis. Baillier's Clin Infect Dis Mycobact Dis 1997; 4: 207–230.

    Google Scholar 

  3. Blackwell JM . Genetic susceptibility to leishmanial infections: studies in mice and man. Parasitology 1996; 112: S67–S74.

    Article  Google Scholar 

  4. Blackwell JM, Black GF, Peacock CS et al. Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study. Phil Trans R Soc B 1997; 352: 1331–1345.

    Article  CAS  Google Scholar 

  5. Roberts M, Mock BA, Blackwell JM . Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. Eur J Immunogenet 1993; 20: 349–362.

    Article  CAS  Google Scholar 

  6. Mock B, Blackwell J, Hilgers J, Potter M, Nacy C . Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice. Eur J Immunogenet 1993; 20: 335–348.

    Article  CAS  Google Scholar 

  7. Bradley DJ . Genetic control of natural resistance to Leishmania donovani. Nature 1974; 250: 353–354.

    Article  CAS  Google Scholar 

  8. Bradley DJ, Kirkley J . Regulation of Leishmania populations within the host. I. The variable course of Leishmania donovani infections in mice. Clin Exp Immunol 1977; 30: 119–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley DJ . Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol 1977; 30: 130–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bradley DJ, Taylor BA, Blackwell J, Evans EP, Freeman J . Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol 1979; 37: 7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gros P, Skamene E, Forget A . Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 1981; 127: 2417–2421.

    CAS  PubMed  Google Scholar 

  12. Brown IN, Glynn AA, Plant J . Inbred mouse strain resistance to Mycobacterium lepraemurium follows the Ity/Lsh pattern. Immunology 1982; 47: 149–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Skamene E, Gros P, Forget A, Patel PJ, Nesbitt MN . Regulation of resistance to leprosy by chromosome 1 locus in the mouse. Immunogenetics 1984; 19: 117–124.

    Article  CAS  Google Scholar 

  14. Goto Y, Buschman E, Skamene E . Regulation of host resistance to Mycobacterium intracellulare in vivo and in vitro by the Bcg gene. Immunogenetics 1989; 30: 218–221.

    Article  CAS  Google Scholar 

  15. Shaw M-A, Collins A, Peacock CS et al. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuberc Lung Dis 1997; 78: 35–45.

    Article  CAS  Google Scholar 

  16. Bellamy R, Ruwende C, Corrah T, McAdam KPWJ, Whittle HC, Hill AVS . Variation in the NRAMP1 gene is associated with susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  Google Scholar 

  17. Greenwood CM, Fujiwara TM, Boothroyd LJ et al. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 2000; 67: 405–416.

    Article  CAS  Google Scholar 

  18. Gao PS, Fujishima S, Mao XQ et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 2000; 58: 74–76.

    Article  CAS  Google Scholar 

  19. Cervino AC, Lakiss S, Sow O, Hill AV . Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet 2000; 64: 507–512.

    Article  CAS  Google Scholar 

  20. Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S . 3′UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 2000; 4: 577–580.

    CAS  PubMed  Google Scholar 

  21. Awomoyi AA, Marchant A, Howson JM, McAdam KP, Blackwell JM, Newport MJ . Interleukin-10, polymorphism in SLC11A1 (formerly NRAMP1), and susceptibility to tuberculosis. J Infect Dis 2002; 186: 1804–1814.

    Article  Google Scholar 

  22. Liaw YS, Tsai-Wu JJ, Wu CH et al. Variations in the NRAMP1 gene and susceptibility of tuberculosis in Taiwanese. Int J Tuberc Lung Dis 2002; 6: 454–460.

    CAS  PubMed  Google Scholar 

  23. Abel L, Sanchez FO, Oberti J et al. Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 1998; 177: 133–145.

    Article  CAS  Google Scholar 

  24. Mohamed HS, Ibrahim ME, Miller EN et al. SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in The Sudan. Eur J Hum Genet 2003 in press.

  25. Bucheton B, Abel L, Kheir MM et al. Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the NRAMP1 region. Genes Immun 2003; 4: 104–109.

    Article  CAS  Google Scholar 

  26. Lander ES, Green P . Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 1987; 84: 2363–2367.

    Article  CAS  Google Scholar 

  27. Matise TC, Gitlin JA . MAP-O-MAT: marker-based linkage mapping on the World Wide Web. Am J Hum Genet 1999; 65: A435.

    Google Scholar 

  28. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cordell HJ, Clayton DG . A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124–141.

    Article  CAS  Google Scholar 

  30. Bland JM, Altman DG . Multiple significance tests: the Bonferroni method. BMJ 1995; 310: 170.

    Article  CAS  Google Scholar 

  31. Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB . Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 1994; 180: 1705–1713.

    Article  CAS  Google Scholar 

  32. Podolin PL, Denny P, Lord CJ et al. Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. J Immunol 1997; 159: 1835–1843.

    CAS  PubMed  Google Scholar 

  33. Serreze DV, Bridgett M, Chapman HD, Chen E, Richard SD, Leiter EH . Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for beta 2-microglobulin. J Immunol 1998; 160: 1472–1478.

    CAS  PubMed  Google Scholar 

  34. Morel L, Blenman KR, Croker BP, Wakeland EK . The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proc Natl Acad Sci USA 2001; 98: 1787–1792.

    Article  CAS  Google Scholar 

  35. Burgner D, Usen S, Rockett K et al. Nucleotide and haplotypic diversity of the NOS2A promoter region and its relationship to cerebral malaria. Hum Genet 2003; 112: 379–386.

    CAS  PubMed  Google Scholar 

  36. Hobbs MR, Udhayakumar V, Levesque MC et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 2002; 360: 1468–1475.

    Article  CAS  Google Scholar 

  37. Choi HS, Rai PR, Chu HW, Cool C, Chan ED . Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 2002; 166: 178–186.

    Article  Google Scholar 

  38. Tunctan B, Okur H, Calisir CH et al. Comparison of nitric oxide production by monocyte/macrophages in healthy subjects and patients with active pulmonary tuberculosis. Pharmacol Res 1998; 37: 219–226.

    Article  CAS  Google Scholar 

  39. Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z . Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuberc Lung Dis 1997; 78: 247–255.

    Article  CAS  Google Scholar 

  40. Schon T, Hernandez-Pando RH, Negesse Y, Leekassa R, Sundqvist T, Britton S . Expression of inducible nitric oxide synthase and nitrotyrosine in borderline leprosy lesions. Br J Dermatol 2001; 145: 809–815.

    Article  CAS  Google Scholar 

  41. Hieshima K, Imai T, Baba M et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol 1997; 159: 1140–1149.

    CAS  PubMed  Google Scholar 

  42. Adema GJ, Hartgers F, Verstraten R et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 1997; 387: 713–717.

    Article  CAS  Google Scholar 

  43. Kodelja V, Muller C, Politz O, Hakij N, Orfanos CE, Goerdt S . Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern. J Immunol 1998; 160: 1411–1418.

    CAS  PubMed  Google Scholar 

  44. Brown DH, Zwilling BS . Activation of the hypothalamic–pituitary–adrenal axis differentially affects the anti-mycobacterial activity of macrophages from BCG-resistant and susceptible mice. J Neuroimmunol 1994; 53: 181–187.

    Article  CAS  Google Scholar 

  45. Brown DH, Sheridan J, Pearl D, Zwilling BS . Regulation of mycobacterial growth by the hypothalamus–pituitary–adrenal axis: differential responses of Mycobacterium bovis BCG-resistant and -susceptible mice. Infect Immun 1993; 61: 4793–4800.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsukawa A, Lukacs NW, Hogaboam CM, Chensue SW, Kunkel III SL . Chemokines and other mediators, 8. Chemokines and their receptors in cell-mediated immune responses in the lung. Microsc Res Tech 2001; 53: 298–306.

    Article  CAS  Google Scholar 

  47. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ . Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 2001; 104: 99–108.

    Article  CAS  Google Scholar 

  48. Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA . Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998; 19: 513–521.

    Article  CAS  Google Scholar 

  49. Lande R, Giacomini E, Grassi T et al. IFN-alphabeta released by Mycobacterium tuberculosis-infected human dendritic cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. J Immunol 2003; 170: 1174–1182.

    Article  CAS  Google Scholar 

  50. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  Google Scholar 

  51. Aickin M, Gensler H . Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods [see comments] 1996; 86: 726–728.

  52. Knapp M . A note on power approximations for the transmission/disequilibrium test. Am J Hum Genet 1999; 64: 1177–1185.

    Article  CAS  Google Scholar 

  53. Ridley DS, Jopling WH . Classification of leprosy according to immunity. A five-group system. Int J Lepr Mycobact Dis 1966; 34: 255–273.

    CAS  Google Scholar 

  54. Xu W, Liu L, Emson PC, Harrington CR, Charles IG . Evolution of a homopurine–homopyrimidine pentanucleotide repeat sequence upstream of the human inducible nitric oxide synthase gene. Gene 1997; 204: 165–170.

    Article  CAS  Google Scholar 

  55. Weber JL, Kwitek AE, May PE, Wallace MR, Collins FS, Ledbetter DH . Dinucleotide repeat polymorphisms at the D17S250 and D17S261 loci. Nucleic Acids Res 1990; 18: 4640.

    PubMed  PubMed Central  Google Scholar 

  56. Liu H, Chao D, Nakayama EE et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA 1999; 96: 4581–4585.

    Article  CAS  Google Scholar 

  57. An P, Nelson GW, Wang L et al. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA 2002; 99: 10002–10007.

    Article  CAS  Google Scholar 

  58. Gonzalez E, Dhanda R, Bamshad M et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci USA 2001; 98: 5199–5204.

    Article  CAS  Google Scholar 

  59. Rovin BH, Lu L, Saxena R . A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 1999; 259: 344–348.

    Article  CAS  Google Scholar 

  60. Holmans P, Clayton D . Efficiency of typing unaffected relatives in an affected sib-pair linkage study with single locus and multiple tightly-linked markers. Am J Hum Genet 1995; 37: 1221–1232.

    Google Scholar 

  61. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A . Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000; 25: 12–13.

    Article  CAS  Google Scholar 

  62. Kong A, Cox NJ . Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  Google Scholar 

  63. Hedrick PW . Gametic disequilibrium measures: proceed with caution. Genetics 1987; 117: 331–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  65. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  Google Scholar 

  66. Kun JF, Mordmuller B, Lell B, Lehman LG, Luckner D, Kremsner PG . Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 1998; 351: 265–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Wellcome Trust. SJ held an MRC research studentship. We thank the people of Belem for their cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Blackwell.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, S., Miller, E., Black, G. et al. Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5, 46–57 (2004). https://doi.org/10.1038/sj.gene.6364029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364029

Keywords

This article is cited by

Search

Quick links