Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal

Abstract

Telomerase is a complex ribonucleoprotein enzyme that exhibits elevated activity in the majority of cases of human leukemia. We have previously shown that retroviral expression of the catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), in human cord blood CD34+ cells leads to an enhanced survival of mature hematopoietic cells. The mechanism for this pro-survival effect is not known. Here, we show that telomerase may play a role in leukemogenesis as a survival factor, independent of its role in maintaining telomere length. Retroviral expression of hTERT in the cytokine-dependent, human hematopoietic progenitor cell line, TF-1, resulted in the survival of cells following the withdrawal of cytokine, with protection from apoptosis, but did not promote unlimited replicative potential. This hTERT-mediated effect on cell survival does not involve Bcl-2 family members, results in accumulation of cells in G1 and appears to operate via autocrine expression of IL-3 and activation of the p53/p21 pathway. Survival in the absence of cytokine stimulation was also observed following retroviral expression of hTERT in normal cord blood CD34+ cells. This study demonstrates a novel pro-survival role for hTERT and may have important implications for the role of hTERT in the pathogenesis of leukemia and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Elwood N . Telomere biology of human hematopoietic stem cells. Cancer Control 2004; 11: 77–85.

    Article  PubMed  Google Scholar 

  2. Yamada O, Oshimi K, Motoji T, Mizoguchi H . Telomeric DNA in normal and leukemic blood cells. J Clin Invest 1995; 95: 1117–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohyashiki JH, Ohyashiki K, Iwama H, Hayashi S, Toyama K, Shay JW . Clinical implications of telomerase activity levels in acute leukemia. Clin Cancer Res 1997; 3: 619–625.

    CAS  PubMed  Google Scholar 

  4. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  5. Ohyashiki JH, Sashida G, Tauchi T, Ohyashiki K . Telomeres and telomerase in hematologic neoplasia. Oncogene 2002; 21: 680–687.

    Article  CAS  PubMed  Google Scholar 

  6. Holt SE, Shay JW . Role of telomerase in cellular proliferation and cancer. J Cell Physiol 1999; 180: 10–18.

    Article  CAS  PubMed  Google Scholar 

  7. Blasco MA . Telomerase beyond telomeres. Nat Rev Cancer 2002; 2: 627–633.

    Article  CAS  PubMed  Google Scholar 

  8. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  9. Vaziri H, Benchimol S . Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Current Biology 1998; 8: 279–282.

    Article  CAS  PubMed  Google Scholar 

  10. Elwood NJ, Jiang XR, Chiu CP, Lebkowski JS, Smith CA . Enhanced long-term survival, but no increase in replicative capacity, following retroviral transduction of human cord blood CD34+ cells with human telomerase reverse transcriptase. Haematologica 2004; 89: 377–378.

    PubMed  Google Scholar 

  11. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 1989; 140: 323–334.

    Article  CAS  PubMed  Google Scholar 

  12. Re MC, Monari P, Gibellini D, Ciancianaini P, Dall'Aglio PP, Vignoli M et al. Human T cell leukemia virus type II increases telomerase activity in uninfected CD34+ hematopoietic progenitor cells. J Hematother Stem Cell Res 2000; 9: 481–487.

    Article  CAS  PubMed  Google Scholar 

  13. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17: 498–502.

    Article  CAS  PubMed  Google Scholar 

  14. Howrey RP, El-Alfondi M, Phillips KL, Wilson L, Rooney B, Lan N et al. An in vitro system for efficiently evaluating gene therapy approaches to hemoglobinopathies. Gene Therapy 2000; 7: 215–223.

    Article  CAS  PubMed  Google Scholar 

  15. McCowage GB, Phillips KL, Gentry TL, Hull S, Kurtzberg J, Gilboa E et al. Multiparameter-fluorescence activated cell sorting analysis of retroviral vector gene transfer into primitive umbilical cord blood cells. Exp Hematol 1998; 26: 288–298.

    CAS  PubMed  Google Scholar 

  16. Rudoll T, Phillips K, Lee SW, Hull S, Gaspar O, Sucgang N et al. High-efficiency retroviral vector mediated gene transfer into human peripheral blood CD4+ T lymphocytes. Gene Therapy 1996; 3: 695–705.

    CAS  PubMed  Google Scholar 

  17. Hoang T, Paradis E, Brady G, Billia F, Nakahara K, Iscove NN et al. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Blood 1996; 87: 102–111.

    CAS  PubMed  Google Scholar 

  18. Knight MJ, Riffkin CD, Muscat AM, Ashley DM, Hawkins CJ . Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene 2001; 20: 5789–5798.

    Article  CAS  PubMed  Google Scholar 

  19. Stier S, Cheng T, Forkert R, Lutz C, Dombkowski DM, Zhang JL et al. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells. Blood 2003; 102: 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  20. Holyoake TL, Jiang X, Jorgensen HG, Graham S, Alcorn MJ, Laird C et al. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001; 97: 720–728.

    Article  CAS  PubMed  Google Scholar 

  21. Hanauer A, Mandel JL . The glyceraldehyde 3 phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse. EMBO J 1984; 3: 2627–2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–279.

    Article  CAS  PubMed  Google Scholar 

  23. Jordan CT, Yamasaki G, Minamoto D . High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations. Exp Hematol 1996; 24: 1347–1355.

    CAS  PubMed  Google Scholar 

  24. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR . The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2000; 2: 426–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antonchuk J, Sauvageau G, Humphries RK . HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 2001; 29: 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  26. Gentry T, Smith C . Retroviral vector-mediated gene transfer into umbilical cord blood CD34brCD38-CD33- cells. Exp Hematol 1999; 27: 1244–1254.

    Article  CAS  PubMed  Google Scholar 

  27. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  CAS  PubMed  Google Scholar 

  28. Mandal M, Kumar R . Bcl-2 modulates telomerase activity. J Biol Chem 1997; 272: 14183–14187.

    Article  CAS  PubMed  Google Scholar 

  29. Cory S, Huang DC, Adams JM . The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003; 22: 8590–8607.

    Article  CAS  PubMed  Google Scholar 

  30. Kang SS, Kwon T, Kwon DY, Do SI . Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999; 274: 13085–13090.

    Article  CAS  PubMed  Google Scholar 

  31. Ezoe S, Matsumura I, Satoh Y, Tanaka H, Kanakura Y . Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle 2004; 3: 314–318.

    Article  CAS  PubMed  Google Scholar 

  32. Comalada M, Xaus J, Sanchez E, Valledor AF, Celada A . Macrophage colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, or IL-3-dependent survival of macrophages, but not proliferation, requires the expression of p21(Waf1) through the phosphatidylinositol 3-kinase/Akt pathway. Eur J Immunol 2004; 34: 2257–2267.

    Article  CAS  PubMed  Google Scholar 

  33. Gartel AL, Serfas MS, Tyner AL . p21 – negative regulator of the cell cycle. Proc Soc Exp Biol Med 1996; 213: 138–149.

    Article  CAS  PubMed  Google Scholar 

  34. Bartek J, Lukas J . Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001; 490: 117–122.

    Article  CAS  PubMed  Google Scholar 

  35. Weiss RH . p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 2003; 4: 425–429.

    Article  CAS  PubMed  Google Scholar 

  36. Cao Y, Li H, Deb S, Liu JP . TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 2002; 21: 3130–3138.

    Article  CAS  PubMed  Google Scholar 

  37. Dudognon C, Pendino F, Hillion J, Saumet A, Lanotte M, Segal-Bendirdjian E . Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004; 23: 7469–7474.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002; 99: 12606–12611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the BMDI Cord Blood Bank for supply of human cord blood for research purposes. This work was supported by the Leukemia Research Fund of the Royal Children's Hospital, the Leukaemia Auxiliary of the Royal Children's Hospital, the Murdoch Children's Research Institute and a University of Melbourne Early Career Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N J Elwood.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Ferguson, M., Hawkins, C. et al. Human telomerase reverse transcriptase protects hematopoietic progenitor TF-1 cells from death and quiescence induced by cytokine withdrawal. Leukemia 20, 1270–1278 (2006). https://doi.org/10.1038/sj.leu.2404251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404251

Keywords

This article is cited by

Search

Quick links