Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction

Abstract

Converging neuropsychological and functional neuroimaging evidence indicates that the dorsal anterior cingulate cortex (dACC) is dysfunctional in drug-addicted populations. Few studies, however, have investigated the biochemical and physiological properties of the dACC in such populations. We used proton magnetic resonance spectroscopy (1H-MRS) together with functional magnetic resonance imaging (fMRI) to probe dACC biochemistry and physiological activity during performance of a behavioural control task in 24 opiate-dependent individuals (maintained on a stable dose of methadone or buprenorphine at the time of study) and 24 age, gender, intelligence and performance-matched healthy subjects. While both groups activated the dACC to comparable levels, the opiate-using group displayed relatively increased task-related activation of frontal, parietal and cerebellar regions, as well as reduced concentrations of dACC N-acetylaspartate and glutamate/glutamine. In addition, the opiate-using group failed to show the expected correlations between dACC activation and behavioural measures of cognitive control. These findings suggest that the dACC is biochemically and physiologically abnormal in long-term opiate-dependent individuals. Furthermore, opiate addicts required increased, perhaps compensatory, involvement of the fronto-parietal and cerebellar behavioural regulation network to achieve normal levels of task performance/behavioural control. These neurobiological findings may partly underpin key addiction-related phenomena, such as poor inhibitory control of drug-related behaviour in the face of adverse consequences, and may be of relevance to the design of future treatment studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3

Similar content being viewed by others

References

  1. APA. Diagnostic and statistical manual of mental disorders, 4th edn (DSM-IV). American Psychiatric Association: Washington DC, 1994.

  2. Robinson TE, Berridge KC . The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18: 247–291.

    Article  CAS  Google Scholar 

  3. Goldstein RZ, Volkow ND . Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002; 159: 1642–1652.

    Article  Google Scholar 

  4. Jentsch JD, Taylor JR . Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berlin) 1999; 146: 373–390.

    Article  CAS  Google Scholar 

  5. Lubman DI, Yücel M, Pantelis C . Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction 2004; 99: 1491–1502.

    Article  Google Scholar 

  6. Robinson TE, Berridge KC . Addiction. Annu Rev Psychol 2003; 54: 25–53.

    Article  Google Scholar 

  7. Volkow ND, Fowler JS . Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 2000; 10: 318–325.

    Article  CAS  Google Scholar 

  8. Volkow ND, Fowler JS, Wang GJ, Swanson JM . Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 2004; 9: 557–569.

    Article  CAS  Google Scholar 

  9. Botvinick MM, Cohen JD, Carter CS . Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 2004; 8: 539–546.

    Article  Google Scholar 

  10. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S . The role of the medial frontal cortex in cognitive control. Science 2004; 306: 443–447.

    Article  CAS  Google Scholar 

  11. Bush G, Shin LM . The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature Protocols 2006; 1: 308–313.

    Article  Google Scholar 

  12. Hester R, Garavan H . Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 2004; 24: 11017–11022.

    Article  CAS  Google Scholar 

  13. Matochik JA, London ED, Eldreth DA, Cadet JL, Bolla KI . Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 2003; 19: 1095–1102.

    Article  Google Scholar 

  14. Forman SD, Dougherty GG, Casey BJ, Siegle GJ, Braver TS, Barch DM et al. Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biol Psychiatry 2004; 55: 531–537.

    Article  CAS  Google Scholar 

  15. Garavan H, Ross TJ, Kaufman J, Stein EA . A midline dissociation between error-processing and response-conflict monitoring. Neuroimage 2003; 20: 1132–1139.

    Article  CAS  Google Scholar 

  16. Lee TM, Zhou WH, Luo XJ, Yuen KS, Ruan XZ, Weng XC . Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neurosci Lett 2005; 382: 211–216.

    Article  CAS  Google Scholar 

  17. Price CJ, Friston KJ . Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8: 102–108.

    Article  CAS  Google Scholar 

  18. Bush G, Shin LM, Holmes J, Rosen BR, Vogt BA . The Multi-Source Interference Task: validation study with fMRI in individual subjects. Mol Psychiatry 2003; 8: 60–70.

    Article  CAS  Google Scholar 

  19. Heckers S, Weiss AP, Deckersbach T, Goff DC, Morecraft RJ, Bush G . Anterior cingulate cortex activation during cognitive interference in schizophrenia. Am J Psychiatry 2004; 161: 707–715.

    Article  Google Scholar 

  20. Grachev ID, Kumar R, Ramachandran TS, Szeverenyi NM . Cognitive interference is associated with neuronal marker N-acetyl aspartate in the anterior cingulate cortex: an in vivo (1)H-MRS study of the Stroop Color-Word task. Mol Psychiatry 2001; 6: 439–529.

    Google Scholar 

  21. Barker PB . N-acetyl aspartate – a neuronal marker? Ann Neurol 2001; 49: 423–424.

    Article  CAS  Google Scholar 

  22. Petroff OA, Errante LD, Kim JH, Spencer DD . N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 2003; 60: 1646–1651.

    Article  CAS  Google Scholar 

  23. Danielsen ER, Ross B . Magnetic Resonance Spectroscopy of Neurological Diseases, Ist edn. Marcel Dekker Inc: New York, 1999.

    Book  Google Scholar 

  24. Gossop M . The development of a short opiate withdrawal scale (SOWS). Addict Behav 1990; 15: 487–490.

    Article  CAS  Google Scholar 

  25. Gossop M, Darke S, Griffiths P, Hando J, Powis B, Hall W et al. The severity of dependence scale (SDS): psychometric properties of the SDS in English and Australian samples of heroin, cocaine and amphetamine users. Addiction 1995; 90: 607–614.

    Article  CAS  Google Scholar 

  26. First MB, Spitzer RL, Gibbon M, Williams JB . Structured Clinical Interview for DSM-IV Axis I Disorders. In: American Psychiatric Press: Washington DC, 1997.

    Google Scholar 

  27. Wechsler D . Wechsler Abbreviated Scale of Intelligence Manual. The Psychological Corporation: San Antonio, 1999.

    Google Scholar 

  28. Tabachnick BG, Fidell LS . Using Multivariate Statistics, 4th edn. Allyn and Bacon: New York, 2001.

    Google Scholar 

  29. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  Google Scholar 

  30. Smith SM . Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–155.

    Article  Google Scholar 

  31. Woolrich MW, Ripley BD, Brady M, Smith SM . Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 2001; 14: 1370–1386.

    Article  CAS  Google Scholar 

  32. Worsley KJ, Evans AC, Marrett S, Neelin P . A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992; 12: 900–918.

    Article  CAS  Google Scholar 

  33. Yücel M, Stuart GW, Maruff P, Velakoulis D, Crowe SF, Savage G et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb Cortex 2001; 11: 17–25.

    Article  Google Scholar 

  34. Fornito A, Whittle S, Wood SJ, Velakoulis D, Pantelis C, Yücel M . The influence of sulcal variability on morphometry of the human anterior cingulate and paracingulate cortex. NeuroImage 2006; 33: 843–854.

    Article  Google Scholar 

  35. Beckmann CF, Jenkinson M, Smith SM . General multilevel linear modeling for group analysis in FMRI. Neuroimage 2003; 20: 1052–1063.

    Article  Google Scholar 

  36. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM . Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 2004; 21: 1732–1747.

    Article  Google Scholar 

  37. Jenkinson M, Smith S . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001; 5: 143–156.

    Article  CAS  Google Scholar 

  38. Provencher SW . Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672–679.

    Article  CAS  Google Scholar 

  39. Kaufman JN, Ross TJ, Stein EA, Garavan H . Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci 2003; 23: 7839–7843.

    Article  CAS  Google Scholar 

  40. Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C et al. Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci 2004; 16: 456–464.

    Article  Google Scholar 

  41. Wager TD, Sylvester CY, Lacey SC, Nee DE, Franklin M, Jonides J . Common and unique components of response inhibition revealed by fMRI. Neuroimage 2005; 27: 323–340.

    Article  Google Scholar 

  42. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV . Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage 2003; 19: 1510–1520.

    Article  Google Scholar 

  43. Sinha R, Lacadie C, Skudlarski P, Fulbright RK, Rounsaville BJ, Kosten TR et al. Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study. Psychopharmacology (Berlin) 2005; 183: 171–180.

    Article  CAS  Google Scholar 

  44. Sinha R, Lacadie C, Skudlarski P, Wexler BE . Neural circuits underlying emotional distress in humans. Ann NY Acad Sci 2004; 1032: 254–257.

    Article  Google Scholar 

  45. Meyerhoff DJ, MacKay S, Bachman L, Poole N, Dillon WP, Weiner MW et al. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 1993; 43: 509–515.

    Article  CAS  Google Scholar 

  46. Haselhorst R, Dursteler-MacFarland KM, Scheffler K, Ladewig D, Muller-Spahn F, Stohler R et al. Frontocortical N-acetylaspartate reduction associated with long-term i.v. heroin use. Neurology 2002; 58: 305–307.

    Article  CAS  Google Scholar 

  47. O’Neill J, Eberling JL, Schuff N, Jagust W, Reed B, Soto G et al. Method to correlate 1H MRSI and 18FDG-PET. Magn Reson Med 2000; 43: 244–250.

    Article  Google Scholar 

  48. Zhu XH, Chen W . Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional (1)H MRS study at 4T. Magn Reson Med 2001; 46: 841–847.

    Article  CAS  Google Scholar 

  49. Moreno A, Ross BD, Bluml S . Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by (13)C MRS and [1-(13)C]glucose infusion. J Neurochem 2001; 77: 347–350.

    Article  CAS  Google Scholar 

  50. Baslow MH . N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 2003; 28: 941–953.

    Article  CAS  Google Scholar 

  51. Magistretti PJ, Pellerin L . Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann NY Acad Sci 1996; 777: 380–387.

    Article  CAS  Google Scholar 

  52. Ernst T, Chang L, Leonido-Yee M, Speck O . Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology 2000; 54: 1344–1349.

    Article  CAS  Google Scholar 

  53. Li SJ, Wang Y, Pankiewicz J, Stein EA . Neurochemical adaptation to cocaine abuse: reduction of N-acetyl aspartate in thalamus of human cocaine abusers. Biol Psychiatry 1999; 45: 1481–1487.

    Article  CAS  Google Scholar 

  54. Dursteler-Mac Farland KM, Stormer R, Seifritz E, Hug I, Muller-Spahn F, Ladewig D et al. Opioid-associated effects on oxygen saturation. Addiction 2000; 95: 285–287.

    Article  CAS  Google Scholar 

  55. Stohler R, Dursteler KM, Stormer R, Seifritz E, Hug I, Sattler-Mayr J et al. Rapid cortical hemoglobin deoxygenation after heroin and methadone injection in humans: a preliminary report. Drug Alcohol Depend 1999; 57: 23–28.

    Article  CAS  Google Scholar 

  56. Buttner A, Mall G, Penning R, Weis S . The neuropathology of heroin abuse. Forensic Sci Int 2000; 113: 435–442.

    Article  CAS  Google Scholar 

  57. Chang L, Ernst T, Grob CS, Poland RE . Cerebral (1)H MRS alterations in recreational 3, 4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) users. J Magn Reson Imag 1999; 10: 521–526.

    Article  CAS  Google Scholar 

  58. Magalhaes AC . Functional magnetic resonance and spectroscopy in drug and substance abuse. Top Magn Reson Imag 2005; 16: 247–251.

    Article  Google Scholar 

  59. Jang JH, Kwon JS, Jang DP, Moon WJ, Lee JM, Ha TH et al. A proton MRSI study of brain N-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive-compulsive disorder. Am J Psychiatry 2006; 163: 1202–1207.

    Article  Google Scholar 

  60. Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychiatry 2000; 48: 1–8.

    Article  CAS  Google Scholar 

  61. Bertolino A, Callicott JH, Mattay VS, Weidenhammer KM, Rakow R, Egan MF et al. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001; 49: 39–46.

    Article  CAS  Google Scholar 

  62. Koob GF . Neurobiology of addiction. Toward the development of new therapies. Ann NY Acad Sci 2000; 909: 170–185.

    Article  CAS  Google Scholar 

  63. Petroff OA . GABA and glutamate in the human brain. Neuroscientist 2002; 8: 562–573.

    Article  CAS  Google Scholar 

  64. Petroff OA, Mattson RH, Rothman DL . Proton MRS: GABA and glutamate. Adv Neurol 2000; 83: 261–271.

    CAS  PubMed  Google Scholar 

  65. Gruetter R, Seaquist ER, Ugurbil K . A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 2001; 281: E100–E112.

    Article  CAS  Google Scholar 

  66. Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 1999; 96: 8235–8240.

    Article  CAS  Google Scholar 

  67. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 2002; 22: 1523–1531.

    Article  CAS  Google Scholar 

  68. Magistretti PJ, Pellerin L . Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1155–1163.

    Article  CAS  Google Scholar 

  69. Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG . In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1165–1177.

    Article  CAS  Google Scholar 

  70. Kalivas PW . Glutamate systems in cocaine addiction. Curr Opin Pharmacol 2004; 4: 23–29.

    Article  CAS  Google Scholar 

  71. Kalivas PW, McFarland K, Bowers S, Szumlinski K, Xi ZX, Baker D . Glutamate transmission and addiction to cocaine. Ann NY Acad Sci 2003; 1003: 169–175.

    Article  CAS  Google Scholar 

  72. Tzschentke TM, Schmidt WJ . Glutamatergic mechanisms in addiction. Mol Psychiatry 2003; 8: 373–382.

    Article  CAS  Google Scholar 

  73. Pennartz CM, McNaughton BL, Mulder AB . The glutamate hypothesis of reinforcement learning. Prog Brain Res 2000; 126: 231–253.

    Article  CAS  Google Scholar 

  74. Williams ZM, Bush G, Rauch SL, Cosgrove GR, Eskandar EN . Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat Neurosci 2004; 7: 1370–1375.

    Article  CAS  Google Scholar 

  75. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 2002; 99: 523–528.

    Article  CAS  Google Scholar 

  76. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS et al. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 2004; 55: 594–602.

    Article  Google Scholar 

  77. Amiez C, Joseph JP, Procyk E . Reward encoding in the monkey anterior cingulate cortex. Cereb Cortex 2006; 16: 1040–1055.

    Article  CAS  Google Scholar 

  78. Haber SN, Kim KS, Mailly P, Calzavara R . Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 2006; 26: 8368–8376.

    Article  CAS  Google Scholar 

  79. Shidara M, Richmond BJ . Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 2002; 296: 1709–1711.

    Article  Google Scholar 

  80. Shima K, Tanji J . Role for cingulate motor area cells in voluntary movement selection based on reward. Science 1998; 282: 1335–1338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Health and Medical Research Council (NHMRC) of Australia (I.D. 236175), a Pfizer Neuroscience Research Grant, the Colonial Foundation, and the Ian Potter Foundation. Dr Yücel is supported by a NHMRC Program Grant (I.D. 350241). Dr Harrison is supported by a NHMRC Training Award (I.D. 400420). Dr Fornito is supported by an Australian Postgraduate Award, J.N. Peters Fellowship, and an NHMRC Training Award (I.D. 454797). Dr Wood is supported by an NHMRC Clinical Career Development Award and a NARSAD Young Investigator Award. Dr Forman is supported by the US Department of Veterans’ Affairs VISN4 MIRECC. Neuroimaging analysis was facilitated by the Neuropsychiatry Imaging Laboratory managed by Ms Bridget Soulsby at the Melbourne Neuropsychiatry Centre and supported by Neurosciences Victoria. The authors would also like to thank Trudi MacKenzie and Antonietta Scaffidi for their efforts in patient recruitment and assessment, Dr Steven Grant for his advice on study design, The Mental Health Research Institute for research and administrative support and NIDA for providing a travel scholarship to present these findings at the College on Problems of Drug Dependence (CPDD) conference, San Juan, Puerto Rico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Yücel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yücel, M., Lubman, D., Harrison, B. et al. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol Psychiatry 12, 691–702 (2007). https://doi.org/10.1038/sj.mp.4001955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001955

Keywords

This article is cited by

Search

Quick links