Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study

Abstract

Attention deficit hyperactivity disorder, combined type (ADHD-CT) is associated with spatial working memory deficits. These deficits are known to be subserved by dysfunction of neural circuits involving right prefrontal, striatal and parietal brain regions. This study determines whether decreased right prefrontal, striatal and parietal activation with a mental rotation task shown in adolescents with ADHD-CT is also evident in children with ADHD-CT. A cross-sectional study of 12 pre-pubertal, right-handed, 8–12-year-old boys with ADHD-CT and 12 pre-pubertal, right-handed, performance IQ-matched, 8–12-year-old healthy boys, recruited from local primary schools, was completed. Participants underwent functional magnetic resonance imaging while performing a mental rotation task that requires spatial working memory. The two groups did not differ in their accuracy or response times for the mental rotation task. The ADHD-CT group showed significantly less activation in right parieto-occipital areas (cuneus and precuneus, BA 19), the right inferior parietal lobe (BA 40) and the right caudate nucleus. Our findings with a child cohort confirm previous reports of right striatal-parietal dysfunction in adolescents with ADHD-CT. This dysfunction suggests a widespread maturational deficit that may be developmental stage independent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. King JA, Tenney J, Rossi V, Colamussi L, Burdick S . Neural substrates underlying impulsivity. Ann NY Acad Sci 2003; 1008: 160–169.

    Article  Google Scholar 

  2. Schulz KP, Newcorn JH, Fan J, Tang C, Halperin JM . Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescent boys. J Am Acad Child Adolesc Psychiatry 2005; 44: 47–54.

    Article  Google Scholar 

  3. Silk T, Vance A, Rinehart N, Egan GO, Boyle M, Cunnington R et al. Fronto-parietal activation in ADHD, combined type: fMRI study. Br J Psych 2005; 187: 282–283.

    Article  CAS  Google Scholar 

  4. Konrad K, Neufang S, Hanisch C, Fink GR, Herpetz-Dahlmann B . Dysfunctional attentional networks in children with ADHD: evidence from an event-related fMRI study. Biol Psychiatry 2006; 59: 643–651.

    Article  Google Scholar 

  5. Sowell ER, Thompson PM, Wellcome SE, Henkenius AL, Toga AW, Peterson BS . Cortical abnormalities in children and adolescents with ADHD. Lancet 2003; 362: 1699–1707.

    Article  Google Scholar 

  6. Mesulam MM . Large-scale neurocognitive networks and distributed processes for attention, language and memory. Ann Neurol 1990; 28: 597–613.

    Article  CAS  Google Scholar 

  7. Bush G, Valera EM, Seidman LJ . Functional neuroimaging of ADHD: a review and suggested future directions. Biol Psychiatry 2005; 57: 1273–1284.

    Article  Google Scholar 

  8. Durston S, Tottenham NT, Thomas KM, Davidson MC, Eigsti I, Yang Y et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry 2003; 53: 871–878.

    Article  Google Scholar 

  9. Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH . Selective effects of methylphenidate in ADHD: an fMRI study. Proc Natl Acad Sci USA 1998; 95: 14494–14499.

    Article  CAS  Google Scholar 

  10. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A . Hypofrontality in ADHD during higher-order motor control: a study with fMRI. Am J Psychiatry 1999; 156: 891–896.

    Article  CAS  Google Scholar 

  11. Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA et al. Anterior cingulated cortex dysfunction in ADHD revealed by fMRI and the counting stroop. Biol Psychiatry 1999; 45: 1542–1552.

    Article  CAS  Google Scholar 

  12. Martinussen R, Hayden J, Hogg-Johnson S, Tannock R . A meta-analysis of working memory impairments in children with ADHD. J Am Acad Child Adolesc Psychiatry 2005; 44: 377–384.

    Article  Google Scholar 

  13. Gathercole SE, Alloway TP . Practitioner review: short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. J Child Psychol Psychiatry 2006; 47: 4–15.

    Article  Google Scholar 

  14. Rapport MD, Scanlan SW, Denney CB . ADHD and scholastic achievement: a model of dual developmental pathways. J Child Psychol Psychiatry 1999; 40: 1169–1183.

    Article  CAS  Google Scholar 

  15. Awh E, Jonides J . Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci 2001; 5: 119–126.

    Article  CAS  Google Scholar 

  16. Postle BR . Distraction-spanning sustained activity during delayed recognition of locations. Neuroimage 2006; 30: 950–962.

    Article  Google Scholar 

  17. Shah P, Miyake A . The separability of working memory resources for spatial thinking and language processing: an individual differences approach. J Exp Psych: Gen 1996; 125: 4–27.

    Article  CAS  Google Scholar 

  18. Beauchamp MA, Lee KE, Haxby JV . Parallel visual motion processing streams for manipulable objects and human movements. Neuron 2002; 34: 149–159.

    Article  CAS  Google Scholar 

  19. Small DM, Gitelman DR, Gregory MD . The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 2003; 18: 633–641.

    Article  CAS  Google Scholar 

  20. Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND et al. Larger deficits in brain networks for response inhibition than for visual selective attention in ADHD. J Child Psychol Psych 2005; 46: 94–111.

    Article  Google Scholar 

  21. Brandeis D, van Leeuwen TH, Rubia K, Vitacco D, Steger J, Pascual-Marqui RD et al. Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behav Brain Res 1998; 94: 111–125.

    Article  CAS  Google Scholar 

  22. van Leeuwen TH, Steinhausen HC, Overtoom CC, Pascual-Marqui RD, van't Klooster B, Rothenberger A et al. The continuous performance test revisited with neuroelectric mapping: impaired orienting in children with attention deficits. Behav Brain Res 1998; 94: 97–110.

    Article  CAS  Google Scholar 

  23. Johnstone SJ, Barry RJ . Auditory event-related potentials to a two-tone discrimination paradigm in attention deficit hyperactivity disorder. Psychiatry Res 1996; 64: 179–192.

    Article  CAS  Google Scholar 

  24. Colby CL, Duhamel JR, Goldberg ME . Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophys 1993; 69: 902–914.

    Article  CAS  Google Scholar 

  25. Colby CL, Duhamel JR, Goldberg ME . The analysis of visual space by the lateral intraparietal area of the monkey. Prog Brain Res 1993; 95: 307–316.

    Article  CAS  Google Scholar 

  26. Conners CK . Conners' Rating Scales, Revised. Multi-Health Systems: New York, 1997.

    Google Scholar 

  27. Silverman WK, Albano AM . Anxiety Disorders Interview Schedule for DSM-IV. Graywind: Texas, 1996.

    Google Scholar 

  28. Wechsler D . Wechsler Intelligence Scale for Children, 4th edn. Psychological Corporation: San Antonio TX, 2004.

    Google Scholar 

  29. Achenbach TM, Edelbrock CS . Manual for the Child Behaviour Checklist and Behaviour Profile. University of Vermont: Burlington, 1983.

    Google Scholar 

  30. Burgund ED, Kang HC, Kelly JE, Buckner RL, Snyder AZ, Petersen SE et al. The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 2002; 17: 184–200.

    Article  Google Scholar 

  31. Kang HC, Burgund ED, Lugar HM, Petersen SE, Schlaggar BL . Comparison of functional activation foci in children and adults using a common stereotactic space. Neuroimage 2003; 19: 16–28.

    Article  Google Scholar 

  32. Thiel CM, Zilles K, Fink GR . Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. Neuroimage 2004; 21: 318–328.

    Article  Google Scholar 

  33. Casey BJ, Davidson MC, Hara Y, Thomas KM, Martinez A, Galvan A et al. Early development of subcortical regions involved in non-cued attention switching. Dev Sci 2004; 7: 534–542.

    Article  CAS  Google Scholar 

  34. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J et al. Development of attentional networks: an fMRI study in children and adults. Neuroimage 2005; 28: 429–439.

    Article  Google Scholar 

  35. Mesulam MM . A cortical network for directed attention and unilateral neglect. Ann Neurol 1981; 10: 309–325.

    Article  CAS  Google Scholar 

  36. Corbetta M, Miezin FM, Shulman GL, Petersen SE . A PET study of visuospatial attention. J Neurosci 1993; 3: 1202–1226.

    Article  Google Scholar 

  37. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD . Functional localization of the system for visuospatail attention using PET. Brain 1997; 120: 515–533.

    Article  Google Scholar 

  38. Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR et al. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 1999; 122: 1093–1106.

    Article  Google Scholar 

  39. Carter CS, Krener P, Chaderjian M, Northcutt C, Wolfe V . Asymmetrical visual-spatial attentional performance in ADHD: evidence for a right hemispheric deficit. Biol Psychiatry 1995; 37: 789–797.

    Article  CAS  Google Scholar 

  40. Schulz KP, Tang CY, Fan J, Marks DJ, Cheung AM, Newcorn JH et al. Differential prefrontal cortex activation during inhibitory control in adolescents with and without childhood ADHD. Neuropsychol 2005; 12: 390–412.

    Article  Google Scholar 

  41. Mostofsky SH, Rimrodt SL, Schafer JGB, Boyce A, Goldberg MC, Pekar JJ et al. Atypical motor and sensory cortex activation in ADHD: a fMRI study of simple sequential finger tapping. Biol Psychiatry 2005; 59: 48–56.

    Article  Google Scholar 

  42. Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliot GR, Gabrieli JDE . Altered neural substrates of cognitive control in childhood ADHD: evidence from fMRI. Am J Psychiatry 2005; 162: 1605–1613.

    Article  Google Scholar 

  43. Castellanos FX, Giedd JN, Eckburg P . Quantitative morphology of the caudate nucleus in ADHD. Am J Psychiatry 1994; 151: 1792–1796.

    Google Scholar 

  44. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS et al. Developmental trajectories of brain volume abnormalities in children and adolescents with ADHD. JAMA 2002; 288: 1740–1748.

    Article  Google Scholar 

  45. Alexander GE, DeLong MR, Strick PL . Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986; 9: 357–381.

    Article  CAS  Google Scholar 

  46. Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley JS . Role of dopamine in the the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharm 2002; 12: 557–566.

    Article  CAS  Google Scholar 

  47. Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, Cervellione KL et al. ADHD: a preliminary diffusion tensor imaging study. Biol Psychiatry 2005; 57: 448–455.

    Article  Google Scholar 

  48. Pliszka SR . The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1385–1390.

    Article  CAS  Google Scholar 

  49. Pliszka SR, McCracken JT, Maas JW . Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 1996; 35: 264–272.

    Article  CAS  Google Scholar 

  50. Castellanos FX, Tannock R . Neuroscience of ADHD: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617–628.

    Article  CAS  Google Scholar 

  51. Ando J, Ono Y, Wright MJ . Genetic structure of spatial and verbal working memory. Behav Genet 2001; 31: 615–624.

    Article  CAS  Google Scholar 

  52. Martinussen R, Hayden J, Hogg-Johnson S, Tannock R . A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2005; 44: 377–384.

    Article  Google Scholar 

  53. Arnsten AFT . Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 1998; 2: 436–447.

    Article  CAS  Google Scholar 

  54. Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C . Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 1999; 29: 527–538.

    Article  CAS  Google Scholar 

  55. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry 1999; 4: 192–196.

    Article  CAS  Google Scholar 

  56. Parasuraman R, Greenwood P, Kumar R, Fossella J . Beyond heritability: neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychol Sci 2005; 16: 200–207.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eric Ormond Baker Trust, the National Health and Medical Research Council (384419) and the Royal Children's Hospital staff and patients. RC is supported by a Fellowship of the NHMRC (217025). TS is supported by a Fellowship of the Australian Rotary Health Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Vance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vance, A., Silk, T., Casey, M. et al. Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Mol Psychiatry 12, 826–832 (2007). https://doi.org/10.1038/sj.mp.4001999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001999

Keywords

This article is cited by

Search

Quick links