Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements

Abstract

The SCL gene (also known as TAL-1) encodes a basic helix – loop – helix transcription factor that is essential for the development of all haematopoietic lineages, and ectopic expression of which results in T cell leukaemia. SCL is expressed in normal pluripotent haematopoietic stem cells and its expression is maintained during differentiation along erythroid, mast and megakaryocytic lineages, but is extinguished following commitment to other cell types. The mechanisms responsible for this pattern of expression are poorly understood, but are likely to illuminate the molecular basis for stem cell development and lineage commitment. We have identified multiple lineage-restricted DNase I hypersensitive sites in a 45 kb region spanning the murine SCL locus. Committed erythroid cells and CD34 positive primitive myeloid cells exhibited both shared and unique DNase I hypersensitive sites whereas none were found in T cells. The function of each hypersensitive site was studied using both transient and stable reporter assays in erythroid, primitive myeloid and T cells. Multiple positive and negative regulatory elements were characterised and found to display lineage-specificity, promoter-specificity and/or chromatin-dependence. These results represent the first description of key components of a complex network of regulatory elements controlling SCL expression during haematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göttgens, B., McLaughlin, F., Bockamp, EO. et al. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Oncogene 15, 2419–2428 (1997). https://doi.org/10.1038/sj.onc.1201426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201426

Keywords

Search

Quick links