Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs

Abstract

The mechanism of action of chemotherapeutic drugs and their ability to induce multidrug resistance (MDR) are of relevance to cancer treatment. Overexpression of P-glycoprotein (Pgp) encoded by the MDR1 gene following chemotherapy can severely limit the efficacy of anticancer agents; however, the manner by which cells acquire high levels of Pgp has not been defined. Herein, we demonstrate that chemotherapeutic drugs induce specific epigenetic modifications at the MDR1 locus, concomitant with MDR1 upregulation mediated by transcriptional activation and a potential post-transcriptional component. We have established that the mechanisms are not mutually exclusive and are dependent on the methylation state of the MDR1 promoter. MDR1 upregulation did not result in further changes to the CpG methylation profile. However, dramatic changes in the temporal and spatial patterning of histone modifications occurred within the 5′ hypomethylated region of MDR1, directly correlating with MDR1 upregulation. Specifically, drug-induced upregulation of MDR1 was associated with increases in H3 acetylation and induction of methylated H3K4 within discrete regions of the MDR1 locus. Our results demonstrate that chemotherapeutic drugs can actively induce epigenetic changes within the MDR1 promoter and enhance the MDR phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M and Scotto KW . (1999). Clin. Cancer Res., 5, 3352–3356.

  • Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T and Schreiber SL . (2002). Proc. Natl. Acad. Sci. USA, 99, 8695–8700.

  • Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC and Allis CD . (2002). Nat. Genet., 30, 73–76.

  • Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D and Fiere D . (1992). Blood, 79, 473–476.

  • Chaudhary PM and Roninson IB . (1993). J. Natl. Cancer Inst., 85, 632–639.

  • Chen H, Lin RJ, Xie W, Wilpitz D and Evans RM . (1999). Cell, 98, 675–686.

  • Christenson LK, Stouffer RL and Strauss III JF . (2001). J. Biol. Chem., 276, 27392–27399.

  • El-Osta A, Baker EK and Wolffe AP . (2001). Mol. Biol. Rep., 28, 209–215.

  • El-Osta A, Kantharidis P, Zalcberg JR and Wolffe AP . (2002). Mol. Cell Biol., 22, 1844–1857.

  • Ferguson PJ, Fisher MH, Stephenson J, Li DH, Zhou BS and Cheng YC . (1988). Cancer Res., 48, 5956–5964.

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL and Paul CL . (1992). Proc. Natl. Acad. Sci. USA, 89, 1827–1831.

  • Garcia-Manero G, Daniel J, Smith TL, Kornblau SM, Lee MS, Kantarjian HM and Issa JP . (2002). Clin. Cancer Res., 8, 2217–2224.

  • Goldie JH and Coldman AJ . (1984). Cancer Res., 44, 3643–3653.

  • Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D, Wang L, Craig JM, Jones PL, Sif S and El-Osta A . (2005). Nat. Genet., 37, 254–264.

  • Hu XF, Slater A, Kantharidis P, Rischin D, Juneja S, Rossi R, Lee G, Parkin JD and Zalcberg JR . (1999a). Blood, 93, 4086–4095.

  • Hu XF, Slater A, Rischin D, Kantharidis P, Parkin JD and Zalcberg J . (1999b). Br. J. Cancer, 79, 831–837.

  • Hu XF, Slater A, Wall DM, Kantharidis P, Parkin JD, Cowman A and Zalcberg JR . (1995). Br. J. Cancer, 71, 931–936.

  • Iervolino A, Trisciuoglio D, Ribatti D, Candiloro A, Biroccio A, Zupi G and Del Bufalo D . (2002). FASEB J., 16, 1453–1455.

  • Jenuwein T and Allis CD . (2001). Science, 293, 1074–1080.

  • Jin S and Scotto KW . (1998). Mol. Cell Biol., 18, 4377–4384.

  • Johnstone RW, Ruefli AA and Lowe SW . (2002). Cell, 108, 153–164.

  • Kantharidis P, El-Osta A, deSilva M, Wall DM, Hu XF, Slater A, Nadalin G, Parkin JD and Zalcberg JR . (1997). Clin. Cancer Res., 3, 2025–2032.

  • Kinkel MD and Horton Jr WE . (2003). J. Cell Biochem., 88, 941–953.

  • Kusaba H, Nakayama M, Harada T, Nomoto M, Kohno K, Kuwano M and Wada M . (1999). Eur. J. Biochem., 262, 924–932.

  • Kuwazuru Y, Yoshimura A, Hanada S, Utsunomiya A, Makino T, Ishibashi K, Kodama M, Iwahashi M, Arima T and Akiyama S . (1990). Cancer, 66, 868–873.

  • Leegwater PA, De Abreu RA and Albertioni F . (1998). Cancer Lett., 130, 169–173.

  • Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM, Head DR, Appelbaum FR and Willman CL . (1997). Blood, 89, 3323–3329.

  • Li J, Lin Q, Yoon HG, Huang ZQ, Strahl BD, Allis CD and Wong J . (2002). Mol. Cell Biol., 22, 5688–5697.

  • Litt MD, Simpson M, Gaszner M, Allis CD and Felsenfeld G . (2001). Science, 293, 2453–2455.

  • Mansson E, Liliemark E, Soderhall S, Gustafsson G, Eriksson S and Albertioni F . (2002). Leukemia, 16, 386–392.

  • Marie JP, Zittoun R and Sikic BI . (1991). Blood, 78, 586–592.

  • Nakayama M, Wada M, Harada T, Nagayama J, Kusaba H, Ohshima K, Kozuru M, Komatsu H, Ueda R and Kuwano M . (1998). Blood, 92, 4296–4307.

  • Noma K, Allis CD and Grewal SI . (2001). Science, 293, 1150–1155.

  • Parekh BS and Maniatis T . (1999). Mol. Cell., 3, 125–129.

  • Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, Bettelheim P, Hopfner M, Scherrer R, Valent P and Havelec L . (1991). J. Natl. Cancer Inst., 83, 708–712.

  • Radosevic N, Delmer A, Tang R, Marie JP and Ajchenbaum-Cymbalista F . (2001). Leukemia, 15, 559–566.

  • Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H and Cohen D . (1999). J. Biol. Chem., 274, 34940–34947.

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J and Kouzarides T . (2002). Nature, 419, 407–411.

  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C and Kouzarides T . (2004). Nat. Cell Biol., 6, 73–77.

  • Strahl BD and Allis CD . (2000). Nature, 403, 41–45.

  • Strahl BD, Ohba R, Cook RG and Allis CD . (1999). Proc. Natl. Acad. Sci. USA, 96, 14967–14972.

  • Tada Y, Wada M, Kuroiwa K, Kinugawa N, Harada T, Nagayama J, Nakagawa M, Naito S and Kuwano M . (2000). Clin. Cancer Res., 6, 4618–4627.

  • te Boekhorst PA, de Leeuw K, Schoester M, Wittebol S, Nooter K, Hagemeijer A, Lowenberg B and Sonneveld P . (1993). Blood, 82, 3157–3162.

  • Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL and Issa JP . (2001). Blood, 97, 2823–2829.

  • van den Heuvel-Eibrink MM, van der Holt B, te Boekhorst PA, Pieters R, Schoester M, Lowenberg B and Sonneveld P . (1997). Br. J. Haematol., 99, 76–83.

  • van den Heuvel-Eibrink MM, Wiemer EA, Prins A, Meijerink JP, Vossebeld PJ, van der Holt B, Pieters R and Sonneveld P . (2002). Leukemia, 16, 833–839.

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F . (2002). Genome Biol., 3, research0034.1–0034.11.

  • Wong H, Anderson WD, Cheng T and Riabowol KT . (1994). Anal. Biochem., 223, 251–258.

  • Wood P, Burgess R, MacGregor A and Yin JA . (1994). Br. J. Haematol., 87, 509–514.

  • Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF and Raguz S . (2003). J. Biol. Chem., 278, 10344–10352.

  • Zhou DC, Marie JP, Suberville AM and Zittoun R . (1992). Leukemia, 6, 879–885.

  • Zochbauer S, Gsur A, Brunner R, Kyrle PA, Lechner K and Pirker R . (1994). Leukemia, 8, 974–977.

Download references

Acknowledgements

We would like to thank Andrew Snowden and Peter Becker for reading the manuscript and helpful comments, David Huang for providing reagents and Katherine Hannan, Ross Hannan, Peter Laird and Gerhard Coetzee for helpful comments on developing the transcriptional activation assays. EKB was formerly supported by an APA scholarship and is a recipient of the Lyonel and Joanna Middows Fellowship. RWJ is a Wellcome Trust Senior Research Fellow. AE-O is a FRAXA Research Foundation Fellow and acknowledges the Hazel & Pip Appel Charitable Trust. This work is supported by a project grant from the National Health and Medical Research Council of Australia (NH&MRC), the Anti-Cancer Council of Victoria (ACCV) and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, E., Johnstone, R., Zalcberg, J. et al. Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 24, 8061–8075 (2005). https://doi.org/10.1038/sj.onc.1208955

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208955

Keywords

This article is cited by

Search

Quick links