Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structure of the C-terminal MA-3 domain of the tumour suppressor protein Pdcd4 and characterization of its interaction with eIF4A

Abstract

Programmed cell death protein 4 (Pdcd4) is a novel tumour suppressor protein, which is involved in the control of eukaryotic transcription and translation. The regulation of translation involves specific interactions with eukaryotic initiation factor (eIF)4A and eIF4G, which are mediated via the two tandem MA-3 domains. We have determined the structure of the C-terminal MA-3 domain of Pdcd4 (Pdcd4 MA-3C), characterized its interaction with eIF4A and compared the features of nuclear magnetic resonance (NMR) spectra obtained from the single domain and tandem MA-3 region. Pdcd4 MA-3C is composed of three layers of helix–turn–helix hairpins capped by a single helix and shows close structural homology to the atypical HEAT repeats found in many eIFs. The sequence conservation and NMR data strongly suggest that the tandem MA-3 region is composed of two equivalent domains connected by a somewhat flexible linker. Pdcd4 MA-3C was found to interact with the N-terminal domain of eIF4A through a conserved surface region encompassing the loop connecting α5 and α6 and the turn linking α3 and α4. This site is strongly conserved in other MA-3 domains known to interact with eIF4A, including the preceding domain of Pdcd4, suggesting a common mode of binding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Afonja O, Juste D, Das S, Matsuhashi S, Samuels H . (2004). Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 23: 8135–8145.

    Article  CAS  PubMed  Google Scholar 

  • Andrade M, Bork P . (1995). HEAT repeats in the Huntingtons-disease protein. Nat Genet 11: 115–116.

    Article  CAS  PubMed  Google Scholar 

  • Bellsolell L, Cho-Park PF, Poulin F, Sonenberg N, Burley SK . (2006). Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1. Structure 14: 913–923.

    Article  CAS  PubMed  Google Scholar 

  • Bitomsky N, Bohm M, Klempnauer K . (2004). Transformation suppressor protein Pdcd4 interferes with JNK-mediated phosphorylation of c-Jun and recruitment of the coactivator p300 by c-Jun. Oncogene 23: 7484–7493.

    Article  CAS  PubMed  Google Scholar 

  • Bohm M, Sawicka K, Siebrasse J, Brehmer-Fastnacht A, Peters R, Klempnauer K . (2003). The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA. Oncogene 22: 4905–4910.

    Article  PubMed  Google Scholar 

  • Chen Y, Knosel T, Kristiansen G, Pietas A, Garber M, Matsuhashi S et al. (2003). Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 200: 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Cmarik J, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H et al. (1999). Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA 96: 14037–14042.

    Article  CAS  PubMed  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A . (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.

    Article  CAS  PubMed  Google Scholar 

  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ . (1998). JPred: a consensus secondary structure prediction server. Bioinformatics 14: 892–893.

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T et al. (2006). Pfam: clans, web tools and services. Nucleic Acids Res 34: D247–D251.

    Article  CAS  PubMed  Google Scholar 

  • Groves MR, Barford D . (1999). Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9: 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Guntert P, Mumenthaler C, Wuthrich K . (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273: 283–298.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann T, Guntert P, Wuthrich K . (2002). Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319: 209–227.

    Article  CAS  PubMed  Google Scholar 

  • Hershey JWB, Merrick WC . (2000). Pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Hershey JWB, and Mathews MB (eds). Translational Control of Gene expression: Pathway and Mechanism of Initiation of Protein Synthesis. Cold Spring Harbor Laboratory Press: New York, pp 33–88.

    Google Scholar 

  • Holm L, Sander C . (1993). Protein structure comparison by alignment of distance matrices. J Mol Biol 233: 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Imataka H, Sonenberg N . (1997). Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17: 6940–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen A, Camalier C, Stark C, Colburn N . (2004). Characterization of programmed cell death 4 in multiple human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther 3: 103–110.

    CAS  PubMed  Google Scholar 

  • Koradi R, Billeter M, Wuthrich K . (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14: 51–55.

    Article  CAS  PubMed  Google Scholar 

  • Laronde-Leblanc N, Santhanam AN, Baker AR, Wlodawer A, Colburn NH . (2007). Structural basis for inhibition of translation by the tumor suppressor Pdcd4. Mol Cell Biol 27: 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Marcotrigiano J, Lomakin I, Sonenberg N, Pestova T, Hellen C, Burley S . (2001). A conserved HEAT domain within elF4G directs assembly of the translation initiation machinery. Mol Cell 7: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Marintchev A, Wagner G . (2004). Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 37: 197–284.

    Article  CAS  PubMed  Google Scholar 

  • Mazza C, Ohno M, Segref A, Mattaj IW, Cusack S . (2001). Crystal structure of the human nuclear cap binding complex. Mol Cell 8: 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Muskett F, Frenkiel T, Feeney J, Freedman R, Carr M, Williamson R . (1998). High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinase-3. J Biol Chem 273: 21736–21743.

    Article  CAS  PubMed  Google Scholar 

  • Oberer M, Marintchev A, Wagner G . (2005). Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19: 2212–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palamarchuk A, Efanov A, Maximov V, Aqeilan R, Croce C, Pekarsky Y . (2005). Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res 65: 11282–11286.

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Methot N, Sonenberg N . (1993). The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor-4A is required for RNA-binding and ATP hydrolysis. Mol Cell Biol 13: 6789–6798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pause A, Sonenberg N . (1992). Mutational analysis of a DEAD box RNA helicase- The mammalian translation initiation-factor eIF-4A. EMBO J 11: 2643–2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP . (2000). Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem Sci 25: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Renshaw P, Lightbody K, Veverka V, Muskett F, Kelly G, Frenkiel T et al. (2005). Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24: 2491–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG, Williamson RA et al. (2002). Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6.CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 277: 21598–21603.

    Article  CAS  PubMed  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever T, Merrick W, Sonenberg N . (1990). Bidirectional RNA helicase activity of eukaryotic translation initiation factor-4A and factor-4F. Mol Cell Biol 10: 1134–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T . (1995). Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. GENE 166: 297–301.

    Article  CAS  PubMed  Google Scholar 

  • Svitkin Y, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham G et al. (2001). The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7: 382–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner N, Cordin O, Banroques J, Doere M, Linder P . (2003). The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11: 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Waters L, Yue B, Veverka V, Renshaw P, Bramham J, Matsuda S et al. (2006a). Structural diversity in p160/CREB-binding protein coactivator complexes. J Biol Chem 281: 14787–14795.

    Article  CAS  PubMed  Google Scholar 

  • Waters LC, Bohm M, Veverka V, Muskett FW, Frenkiel TA, Kelly GP et al. (2006b). NMR assignment and secondary structure determination of the C-terminal MA-3 domain of the tumour suppressor protein Pdcd4. J Biomol NMR 36: S5:18.

    Article  Google Scholar 

  • Williamson R, Carr M, Frenkiel T, Feeney J, Freedman R . (1997). Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36: 13882–13889.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G et al. (2005). The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci USA 102: 16164–16169.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Cho M, Zakowicz H, Hegamyer G, Sonenberg N, Colburn N . (2004). A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24: 3894–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Jansen A, Komar A, Zheng X, Merrick W, Costes S et al. (2003a). The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23: 26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Jansen A, Nair R, Shibahara K, Verma A, Cmarik J et al. (2001). A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappa B or ODC transactivation. Oncogene 20: 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Knies J, Stark C, Colburn N . (2003b). Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 22: 3712–3720.

    Article  CAS  PubMed  Google Scholar 

  • Zakowicz H, Yang H, Stark C, Wlodawer A, Laronde-Leblanc N, Colburn N . (2005). Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI. RNA 11: 261–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Wellcome Trust, Wilhelm-Sander-Stiftung and the Deutsche Krebshilfe. Lorna Waters was supported by a BBSRC PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Carr.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, L., Veverka, V., Böhm, M. et al. Structure of the C-terminal MA-3 domain of the tumour suppressor protein Pdcd4 and characterization of its interaction with eIF4A. Oncogene 26, 4941–4950 (2007). https://doi.org/10.1038/sj.onc.1210305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210305

Keywords

This article is cited by

Search

Quick links