Issue 5, 1998

Mechanistic aspects of anisotropic dissolution of materials Etching of single-crystal silicon in alkaline solutions

Abstract

The origin of chemical anisotropy in the dissolution of single-crystal silicon in alkaline solutions is discussed in terms of the atomic configuration of silicon in the pentacoordinated transition state for (100) and (111) surfaces. It is proposed that tetravalent silicon, which is bonded in a tetrahedral geometry, is attacked in the etch process by the hydroxide ion, forming a pentacoordinated transition state. Owing to the number of bond angles that are fixed by the atomic arrangement at the surface, the energetically favoured trigonal bipyramidal geometry for a pentacoordinated complex is only slightly distorted for the former plane but significantly distorted for the latter, resulting in a higher activation energy for the dissolution of (111) surfaces. The difference in the activation energies for the dissolution of Si(100) and (111) surfaces, arising from steric hindrance in the transition state, can be estimated from the activation energy for a pseudo-rotation of a similar system.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1998,94, 691-694

Mechanistic aspects of anisotropic dissolution of materials Etching of single-crystal silicon in alkaline solutions

T. Baum and D. J. Schiffrin, J. Chem. Soc., Faraday Trans., 1998, 94, 691 DOI: 10.1039/A707473E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements