Issue 3, 1999

Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states

Abstract

The radiative rate constants for depopulation of the excited states of closely-related series of anionic, neutral and cationic europium, terbium and ytterbium complexes have been measured in H2O and D2O. With the aid of selective ligand deuteriation, the relative contributions of OH, NH (both amide and amine) and CH oscillators have been measured and critically assessed. Quenching of the Eu 5D0 excited state by amine NH oscillators is more than twice as efficient as OH quenching. The importance of the distance between the excited Ln ion and the XH oscillator is described with recourse to published crystallographic information. The general equation, q = A′(ΔkH2OkD2O)corr is presented and revised values of A′ for Eu (1.2 ms), Tb (5 ms) and Yb (1 µs) given, which allow for the quenching contribution of closely diffusing OH oscillators. The relevance of such studies to the hydration state of certain gadolinium complexes is described and clear evidence provided for a break in hydration at gadolinium.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1999, 493-504

Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states

A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams and M. Woods, J. Chem. Soc., Perkin Trans. 2, 1999, 493 DOI: 10.1039/A808692C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements