Volume 125, 2004

Optical properties of nanostructured metal films

Abstract

Nanostructured metal films of platinum, gold and silver up to 675 nm thick we prepared by electrochemical deposition through templates of 700 nm diameter polystyrene spheres assembled as hexagonal close packed monolayer on an evaporated gold surface followed by removal of the template by dissolution in tetrahydrofuran. The reflection spectra of the films at normal incidence were recorded as a function of film thickness and the spectra correlated with the local visual appearance of the film and the surface structure from SEM. For thin films, below one quarter sphere height, the spectra show a single reflectivity dip at a wavelength just below the sphere diameter consistent with surface-plasmon grating-like behaviour. For the thicker films several reflectivity dips are observed which move towards longer wavelength with increasing film thickness. This behaviour is shown to be consistent with a model in which light reflected from the top of the structure interferes with light reflected from within the spherical segment cavities in the film.

Article information

Article type
Paper
Submitted
14 Apr 2003
Accepted
19 May 2003
First published
31 Jul 2003

Faraday Discuss., 2004,125, 117-132

Optical properties of nanostructured metal films

P. N. Bartlett, J. J. Baumberg, S. Coyle and M. E. Abdelsalam, Faraday Discuss., 2004, 125, 117 DOI: 10.1039/B304116F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements