Skip to main content

Advertisement

Log in

Time-resolved fluorescence microscopy

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Wouters, P. J. Verveer and P. I. Bastiaens, Imaging biochemistry inside cells, Trends Cell Biol., 2001, 11, 203–211.

    Article  CAS  PubMed  Google Scholar 

  2. P. I. H. Bastiaens and R. Pepperkok, Observing proteins in their natural habitat: the living cell, Trends Biochem. Sci., 2000, 25, 631–637.

    Article  CAS  PubMed  Google Scholar 

  3. D. Phillips, Luminescence lifetimes in biological systems, Analyst, 1994, 119, 543–550.

    Article  CAS  PubMed  Google Scholar 

  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic–Plenum Publishers, New York, 2nd edn., 1999.

    Book  Google Scholar 

  5. B. Valeur, Molecular Fluorescence, Wiley-VCH, New York, 2002.

    Google Scholar 

  6. H. Brismar and B. Ulfhake, Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores, Nat. Biotechnol., 1997, 15, 373–377.

    Article  CAS  PubMed  Google Scholar 

  7. C. G. Morgan, A. C. Mitchell and J. G. Murray, Nanosecond Time-Resolved Fluorescence Microscopy: Principles and Practice, Proc. R. Microsc. Soc., 1990, 1, 463–466.

    Google Scholar 

  8. I. Bugiel, K. König and H. Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution, Lasers Life Sci., 1989, 3, 47–53.

    Google Scholar 

  9. P. Herman, H.-J. Lin and J. R. Lakowicz, Lifetime-based imaging, in Biomedical Photonics Handbook, CRC Press, Boca Raton, FL, 2003, pp. 9–1–9–30.

    Google Scholar 

  10. R. M. Clegg, O. Holub and C. Gohlke, Fluorescence lifetime-resolved imaging: measuring lifetimes in an image, in Methods in Enzymology, Academic Press, New York, 2003, pp. 509–542.

    Google Scholar 

  11. W. B. Amos, Instruments for fluorescence imaging, in Protein localization by fluorescence microscopy. A practical approach, Oxford University Press, Oxford, 2000, pp. 67–108.

    Google Scholar 

  12. C. J. R. Sheppard, Scanning confocal microscopy, in Encyclopedia of Optical Engineering, Marcel Dekker, New York, 2003, pp. 22–41.

    Google Scholar 

  13. P. T. C. So, C. Y. Dong, B. R. Masters and K. M. Berland, Two-Photon Excitation Fluorescence Microscopy, Annu. Rev. Biomed. Eng., 2000, 2, 399–430.

    Article  CAS  PubMed  Google Scholar 

  14. K. König, Multiphoton microscopy in life sciences, J. Microsc., 2000, 200, 83–104.

    Article  PubMed  Google Scholar 

  15. S. E. D. Webb, Y. Gu, S. Lévěque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. D. Sucharov, T. Wilson and M. J. Lever, A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning, Rev. Sci. Instrum., 2002, 73, 1898–1907.

    Article  CAS  Google Scholar 

  16. E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Ween, P. M. Houpt and Y. K. Levine, Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning, 1992, 14, 155–159.

    Article  Google Scholar 

  17. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French and J. D. Hares, 2-D fluorescence lifetime imaging using a time-gated image intensifier, Opt. Commun., 1997, 135, 27–31.

    Article  CAS  Google Scholar 

  18. X. F. Wang, A. Periasamy, B. Herman and D. M. Coleman, Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications, Crit. Rev. Anal. Chem., 1992, 23, 369–395.

    Article  CAS  Google Scholar 

  19. A. Periasamy, P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon and B. Herman, Time-resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye laser system, Rev. Sci. Instrum., 1996, 67, 3722–3731.

    Article  CAS  Google Scholar 

  20. A. V. Agronskaia, L. Tertoolen and H. C. Gerritsen, High frame rate fluorescence lifetime imaging, J. Phys. D: Appl. Phys., 2003, 36, 1655–1662.

    Article  Google Scholar 

  21. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares and A. K. L. Dymoke-Bradshaw, Fluorescence lifetime imaging with picosecond resolution for biomedical applications, Opt. Lett., 1998, 23, 810–812.

    Article  CAS  PubMed  Google Scholar 

  22. D. J. S. Birch and R. E. Imhof, Time-domain Fluorescence Spectroscopy Using Time-Correlated Single Photon Counting, in, Topics in Fluorescence Spectroscopy: Techniques, Plenum Press, New York, 1991.

    Google Scholar 

  23. D. V. O’Connor and D. Phillips, Time-correlated single-photon counting, Academic Press, New York, 1984.

    Google Scholar 

  24. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf and C. Biskup, Fluorescence Lifetime Imaging by Time-Correlated Single-Photon Counting, Microsc. Res. Tech., 2004, 63, 58–66.

    Article  CAS  PubMed  Google Scholar 

  25. H. C. Gerritsen, N. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution, J. Microsc., 2002, 206, 218–224.

    Article  CAS  PubMed  Google Scholar 

  26. R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel and B. Herman, Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy, Appl. Phys. Lett., 2003, 83, 4658–4660.

    Article  CAS  Google Scholar 

  27. R. V. Krishnan, A. Masuda, V. E. Centonze and B. Herman, Quantitative imaging of protein–protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera, J. Biomed. Opt., 2003, 8, 362–367.

    Article  CAS  PubMed  Google Scholar 

  28. R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze and B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera, Rev. Sci. Instrum., 2003, 74, 2714–2721.

    Article  CAS  Google Scholar 

  29. T. W. J. Gadella, T. M. Jovin and R. M. Clegg, Fluorescence lifetime imaging microscopy (FLIM) - spatial resolution of structures on the nanosecond timescale, Biophys. Chem., 1993, 48, 221–239.

    Article  CAS  Google Scholar 

  30. J. R. Lakowicz and K. Berndt, Lifetime-selective fluorescence imaging using an rf phase-sensitive camera., Rev. Sci. Instrum., 1991, 62, 1727–1734.

    Article  CAS  Google Scholar 

  31. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt and M. Johnson, Fluorescence lifetime imaging, Anal. Biochem, 1992, 202, 316–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. G. Morgan, A. C. Mitchell and J. G. Murray, In situ fluorescence analysis using nanosecond decay time imaging, Trends Anal. Chem., 1992, 11, 32–41.

    Article  CAS  Google Scholar 

  33. S. Andersson-Engels, I. Rokahr and J. Carlsson, Time-Resolved and Wavelength-Resolved Spectroscopy in 2-Photon-Excited Fluorescence Microscopy, J. Microsc., 1994, 176, 195–203.

    Article  CAS  Google Scholar 

  34. K. Carlsson, A. Liljeborg, R. M. Andersson and H. Brismar, Confocal pH imaging of microscopic specimens using fluorescence lifetimes and phase fluorometry: influence of parameter choice on system performance, J. Microsc., 2000, 199, 106–114.

    Article  CAS  PubMed  Google Scholar 

  35. T. French, P. T. C. So, D. J. Weaver, T. Coelho-Sampaio, E. Gratton, E. W. Voss and J. Carrero, Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing, J. Microsc., 1997, 185, 339–353.

    Article  CAS  PubMed  Google Scholar 

  36. K. Carlsson and A. Liljeborg, Simultaneous confocal lifetime imaging of multiple fluorophores using the intensity-modulated multiple-wavelength scanning (IMS) technique, J. Microsc., 1998, 191, 119–127.

    Article  CAS  PubMed  Google Scholar 

  37. M. J. Booth and T. Wilson, Low-cost, frequency-domain, fluorescence lifetime confocal microscopy, J. Microsc., 2004, 214, 36–42.

    Article  CAS  PubMed  Google Scholar 

  38. A. Squire, P. J. Verveer, P. I. H. Bastiaens, Multiple frequency fluorescence lifetime imaging microscopy, J. Microsc., 2000, 197, 136–149.

    Article  CAS  PubMed  Google Scholar 

  39. J. Hedstrom, S. Sedarus and F. G. Prendergast, Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer, Biochemistry, 1988, 27, 6203–6208.

    Article  CAS  PubMed  Google Scholar 

  40. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévěque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, Application of the stretched exponential function to fluorescence lifetime imaging, Biophys. J., 2001, 81, 1265–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. J. Behne, J. W. Meyer, K. M. Hanson, N. P. Barry, S. Murata, D. Crumrine, R. W. Clegg, E. Gratton, W. M. Holleran and P. M. Elias, NHE1 Regulates the Stratum Corneum Permeability Barrier Homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging, J. Biol. Chem., 2002, 277, 47399–47406.

    Article  CAS  PubMed  Google Scholar 

  42. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton and R. M. Clegg, Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient, Biophys. J., 2002, 83, 1682–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Philip and K. Carlsson, Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging, J. Opt. Soc. Am. A, 2003, 20, 368–379.

    Article  Google Scholar 

  44. D. S. Elson, J. Siegel, S. E. D. Webb, S. Lévěque-Fort, M. J. Lever, P. M. W. French, K. Lauritsen, M. Wahl and R. Erdmann, Fluorescence lifetime system for microscopy and multi-well plate imaging with a blue picosecond diode laser, Opt. Lett., 2002, 27, 1409–1411.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Sakai and S. Hirayama, A Fast Deconvolution Method to Analyze Fluorescence Decays When the Excitation Pulse Repetition Period Is Less Than the Decay Times, J. Lumin., 1988, 39, 145–151.

    Article  CAS  Google Scholar 

  46. Q. S. Hanley, D. J. Arndt-Jovin and T. M. Jovin, Spectrally resolved fluorescence lifetime imaging microscopy, Appl. Spectrosc., 2002, 56, 155–166.

    Article  CAS  Google Scholar 

  47. P. Tinnefeld, D. P. Herten and M. Sauer, Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM), J. Phys. Chem. A, 2001, 105, 7989–8003.

    Article  CAS  Google Scholar 

  48. M. Straub and S. W. Hell, Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope, Appl. Phys. Lett., 1998, 73, 1769–1771.

    Article  CAS  Google Scholar 

  49. J. Siegel, D. S. Elson, S. E. D. Webb, D. Parsons-Karavassilis, S. Lévěque-Fort, M. J. Cole, M. J. Lever, P. M. W. French, M. A. A. Neil, R. Juškaitis, L. O. Sucharov and T. Wilson, Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning, Opt. Lett., 2001, 26, 1338–1340.

    Article  CAS  PubMed  Google Scholar 

  50. C. E. Bigelow, D. L. Conover and T. H. Foster, Confocal fluorescence spectroscopy and anisotropy imaging system, Opt. Lett., 2003, 28, 695–697.

    Article  PubMed  Google Scholar 

  51. D. S. Lidke, P. Nagy, B. G. Barisas, R. Heintzmann, J. N. Post, K. A. Lidke, A. H. A. Clayton, D. J. Arndt-Jovin and T. M. Jovin, Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET), Biochem. Soc. Trans., 2003, 31, 1020–1027.

    Article  CAS  PubMed  Google Scholar 

  52. A. Squire, P. J. Verveer, O. Rocks and P. I. Bastiaens, Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells, J. Struct. Biol., 2004, 147, 62–69.

    Article  CAS  PubMed  Google Scholar 

  53. R. Varma and S. Mayor, GPI-anchored proteins are organized in submicron domains at the cell surface, Nature, 1998, 394, 798–801.

    Article  CAS  PubMed  Google Scholar 

  54. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévěque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis and P. M. W. French, Time-resolved fluorescence anisotropy imaging applied to live cells, Opt. Lett., 2004, 29, 584–586.

    Article  PubMed  Google Scholar 

  55. J. Siegel, K. Suhling, S. Lévěque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal and P. M. W. French, Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore, Rev. Sci. Instrum., 2003, 74, 182–192.

    Article  CAS  Google Scholar 

  56. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam and T. M. Jovin, Dynamic Fluorescence Anisotropy Imaging Microscopy in the Frequency Domain (rFLIM), Biophys. J., 2002, 83, 1631–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Parsons, B. Vojnovic, S. Ameer-Beg, Imaging protein–protein interactions in cell motility using fluorescence resonance energy transfer (FRET), Biochem. Soc. Trans., 2004, 32, 431–433.

    Article  CAS  PubMed  Google Scholar 

  58. M. Peter, S. M. Ameer-Beg, Imaging molecular interactions by multiphoton FLIM, Biol. Cell, 2004, 96, 231–236.

    Article  CAS  PubMed  Google Scholar 

  59. P. R. Selvin, The renaissance of fluorescence resonance energy transfer, Nat. Struct. Biol., 2000, 7, 730–734.

    Article  CAS  PubMed  Google Scholar 

  60. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys., 1948, 2, 55–75.

    Article  Google Scholar 

  61. L. Stryer and R. P. Haugland, Energy Transfer: A spectroscopic ruler, Proc. Natl. Acad. Sci. USA, 1967, 58, 719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem., 1978, 47, 819–846.

    Article  CAS  PubMed  Google Scholar 

  63. C. G. Dos Remedios and P. D. J. Moens, Fluorescence Resonance Energy Transfer Spectroscopy is a Reliable ‘Ruler’ for Measuring Structural Changes in Proteins. Dispelling the problem of the unknown orientation factor, J. Struct. Biol., 1995, 115, 175–185.

    Article  PubMed  Google Scholar 

  64. R. P. Haugland, J. Yguerabide and L. Stryer, Dependence of kinetics of singlet-singlet energy transfer on spectral overlap, Proc. Natl. Acad. Sci. USA, 1969, 63, 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. R. E. Dale, J. Eisinger and W. E. Blumberg, The orientational freedom of molecular probes, Biophys. J., 1979, 26, 161–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. J. Eisinger and R. E. Dale, Interpretation of intramolecular energy transfer experiments, J. Mol. Biol., 1974, 84, 643–647.

    Article  CAS  PubMed  Google Scholar 

  67. H. Du, R. C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey, PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry, Photochem. Photobiol., 1998, 68, 141–142.

    CAS  Google Scholar 

  68. E. A. Jares-Erijman and T. M. Jovin, FRET imaging, Nat. Biotechnol., 2003, 21, 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  69. P. I. H. Bastiaens and A. Squire, Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell, Trends Cell Biol., 1999, 9, 48–52.

    Article  CAS  PubMed  Google Scholar 

  70. P. van Roessel and A. H. Brand, Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins, Nat. Cell Biol., 2002, 4, E15–20.

    Article  CAS  PubMed  Google Scholar 

  71. T. Oida, Y. Sako and A. Kusumi, Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells, Biophys. J., 1993, 64, 676–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. T. W. J. Gadella and T. M. Jovin, Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation, J. Cell Biol., 1995, 129, 1543–1558.

    Article  CAS  PubMed  Google Scholar 

  73. P. I. H. Bastiaens and T. M. Jovin, Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C βI, Proc. Natl. Acad. Sci. USA, 1996, 93, 8407–8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J. Lippincott-Schwartz and G. H. Patterson, Development and use of fluorescent protein markers in living cells, Science, 2003, 300, 87–91.

    Article  CAS  PubMed  Google Scholar 

  75. R. Y. Tsien, The green fluorescent protein, Annu. Rev. Biochem., 1998, 67, 509–544.

    Article  CAS  PubMed  Google Scholar 

  76. M. Zimmer, Green fluorescent protein (GFP): Applications, structure and related photophysical behavior, Chem. Rev., 2002, 102, 759–781.

    Article  CAS  PubMed  Google Scholar 

  77. M. Cotlet, J. Hofkens, M. Maus, T. Gensch, M. van der Auweraer, J. Michiels, G. Dirix, M. van Guyse, J. Vanderleyden, A. J. W. G. Visser, F. C. de Schryver, Excited state dynamics in the enhanced green fluorescent protein mutant probed by picosecond time-resolved single photon counting spectroscopy, J. Phys. Chem. B, 2001, 105, 4999–5006.

    Article  CAS  Google Scholar 

  78. A. A. Heikal, S. T. Hess and W. W. Webb, Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity, Chem. Phys., 2001, 274, 37–55.

    Article  CAS  Google Scholar 

  79. M. A. Uskova, J. Borst, M. A. Hink, A. van Hoek, A. Schots, A. L. Klyachko, A. J. W. G. Visser, Fluorescence dynamics of green fluorescent protein in AOT reversed micelles, Biophys. Chem., 2000, 87, 73–84.

    Article  CAS  PubMed  Google Scholar 

  80. K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lévěque-Fort, S. E. D. Webb and D. M. Davis, Imaging the environment of green fluorescent protein, Biophys. J., 2002, 83, 3589–3595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. R. Pepperkok, A. Squire, S. Geley and P. I. H. Bastiaens, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol., 1999, 9, 269–272.

    Article  CAS  PubMed  Google Scholar 

  82. T. Ng, M. Parsons, W. E. Hughes, J. Monypenny, D. Zicha, A. Gautreau, M. Arpin, S. Gschmeissner, P. J. Verveer, P. I. H. Bastiaens and P. J. Parker, Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility, EMBO J., 2001, 20, 2723–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. J. W. Legg, C. A. Lewis, M. Parsons, T. Ng and C. M. Isacke, A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility, Nat. Cell Biol., 2002, 4, 399–407.

    Article  CAS  PubMed  Google Scholar 

  84. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. Bastiaens and P. J. Parker, Imaging protein kinase C alpha activation in cells, Science, 1999, 283, 2085–2089.

    Article  CAS  PubMed  Google Scholar 

  85. P. J. Verveer, F. S. Wouters, A. R. Reynolds and P. I. H. Bastiaens, Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane, Science, 2000, 290, 1567–1570.

    Article  CAS  PubMed  Google Scholar 

  86. F. S. Wouters and P. I. Bastiaens, Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells, Curr. Biol., 1999, 9, 1127–1130.

    Article  CAS  PubMed  Google Scholar 

  87. F. G. Haj, P. J. Verveer, A. Squire, B. G. Neel and P. I. H. Bastiaens, Imaging Sites of Receptor Dephosphorylation by PTP1B on the Surface of the Endoplasmic Reticulum, Science, 2002, 1708–1710.

    Google Scholar 

  88. A. G. Harpur, F. S. Wouters and P. I. Bastiaens, Imaging FRET between spectrally similar GFP molecules in single cells, Nat. Biotechnol., 2001, 19, 167–169.

    Article  CAS  PubMed  Google Scholar 

  89. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk and M. L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH, Proc. Natl. Acad. Sci. USA, 1992, 89, 1271–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Q. Zhang, D. W. Piston and R. H. Goodman, Regulation of Corepressor Function by Nuclear NADH, Science, 2002, 1895–1897.

    Google Scholar 

  91. S. Murata, P. Herman and J. R. Lakowicz, Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei, J. Histochem. Cytochem., 2001, 49, 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  92. S. Murata, P. Herman and J. R. Lakowicz, Texture analysis of fluorescence lifetime images of nuclear DNA with effect of fluorescence resonance energy transfer, Cytometry, 2001, 43, 94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. S. Murata, P. Herman, H. J. Lin and J. R. Lakowicz, Fluorescence Lifetime Imaging of Nuclear DNA: Effect of Fluorescence Resonance Energy Transfer, Cytometry, 2000, 41, 178–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers and D. W. Slaaf, Discrimination of DNA and RNA in cells by a vital fluorescent probe: Lifetime Imaging of SYTO13 in healthy and apoptotic cells, Cytometry, 2002, 47, 226–235.

    Article  PubMed  Google Scholar 

  95. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk and M. L. Johnson, Fluorescence lifetime imaging of calcium using Quin-2, Cell Calcium, 1992, 13, 131–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk and W. J. Lederer, Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2, Cell Calcium, 1994, 15, 7–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. B. Herman, P. Wodnicki, S. Kwon, A. Periasamy, G. W. Gordon, N. Mahajan, W. Xue Feng, Recent Developments in Monitoring Calcium and Protein Interactions in Cells Using Fluorescence Lifetime Microscopy, J. Fluoresc., 1997, 7, 85–92.

    Article  CAS  Google Scholar 

  98. R. Sanders, H. C. Gerritsen, A. Draaijer, P. M. Houpt and Y. K. Levine, Fluorescence Lifetime Imaging of Free Calcium in Single Cells, Bioimaging, 1994, 2, 131–138.

    Article  CAS  Google Scholar 

  99. H. C. Gerritsen, R. Sanders, A. Draaijer, C. Ince and Y. K. Levine, Fluorescence Lifetime Imaging of Oxygen in Living Cells, J. Fluoresc., 1997, 7, 11–16.

    Article  CAS  Google Scholar 

  100. H. J. Lin, P. Herman and J. R. Lakowicz, Fluorescence lifetime-resolved pH imaging of living cells, Cytometry, 2003, 52A, 77–89.

    Article  Google Scholar 

  101. R. Sanders, A. Draaijer, H. C. Gerritsen, P. M. Houpt and Y. K. Levine, Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy, Anal. Biochem., 1995, 227, 302–308.

    Article  CAS  PubMed  Google Scholar 

  102. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi and E. Sorbellini, Fluorescence lifetime imaging: An application to the detection of skin tumors, IEEE J. Sel. Top. Quantum Electron., 1999, 5, 923–929.

    Article  CAS  Google Scholar 

  103. P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani and G. W. Stamp, Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer, J. Pathol., 2003, 199, 309–317.

    Article  PubMed  Google Scholar 

  104. D. S. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. J. Tadrous, R. Benninger, P. M. P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. M. Davis, J. Lever, M. A. A. Neil, D. Phillips, G. W. Stamp and P. M. W. French, Time-domain fluorescence lifetime imaging applied to biological tissue, Photochem. Photobiol. Sci., 2004, 3, 795–801.

    Article  CAS  PubMed  Google Scholar 

  105. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlandas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous and G. W. H. Stamp, Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy and complex decay profiles, Appl. Opt., 2003, 42, 2995–3004.

    Article  PubMed  Google Scholar 

  106. J. J. Birmingham, Frequency-domain lifetime imaging methods at Unilever Research, J. Fluoresc., 1997, 7, 45–54.

    Article  CAS  Google Scholar 

  107. K. König, H. Schneckenburger and R. Hibst, Time-gated in vivo autofluorescence imaging of dental caries, Cell. Mol. Biol., 1999, 45, 233–239.

    PubMed  Google Scholar 

  108. J. P. Connelly, S. W. Botchway, L. Kunz, D. Pattison, A. W. Parker, A. J. MacRobert, Time-resolved fluorescence imaging of photosensitiser distributions in mammalian cells using a picosecond laser line-scanning microscope, J. Photochem. Photobiol. A Chem., 2001, 142, 169–175.

    Article  CAS  Google Scholar 

  109. M. Kress, T. Meier, R. Steiner, F. Dolp, R. Erdmann, U. Ortmann, A. Rück, Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes, J. Biomed. Opt., 2003, 8, 26–32.

    Article  CAS  PubMed  Google Scholar 

  110. A. C. Rück, M. Kress, F. Dolp, N. Akgün, T. Meier and R. Steiner, New Microscopic techniques to investigate intracellular localization and reactions of photosensitizers. Laser scanning fluorescence lifetime imaging (LS-FLIM), Med. Laser Appl., 2002, 41–47.

    Google Scholar 

  111. A. D. Scully, A. J. Mac Robert, S. Botchway, P. O’Neill, A. W. Parker, R. B. Ostler and D. Phillips, Development of a laser-based fluorescence microscope with subnanosecond time resolution, J. Fluoresc., 1996, 6, 119–125.

    Article  CAS  PubMed  Google Scholar 

  112. A. D. Scully, R. B. Ostler, A. J. MacRobert, A. W. Parker, C. d. Lara, P. O’Neill and D. Phillips, Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminium and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts, Photochem. Photobiol., 1998, 68, 199–204.

    CAS  PubMed  Google Scholar 

  113. A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, A. W. Parker, A. J. MacRobert, Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms., Bioimaging, 1997, 5, 9–18.

    Article  Google Scholar 

  114. T. Förster and G. Hoffmann, Die Viskositätsabhängigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme, Z. Phys. Chem. (Munich), 1971, 75, 63–76.

    Article  Google Scholar 

  115. B. Wilhelmi, Influence of solvent viscosity on excited state lifetime and fluorescence quantum yield of dye molecules, Chem. Phys., 1982, 66, 351–355.

    Article  CAS  Google Scholar 

  116. C. E. Kung and J. K. Reed, Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation, Biochemistry, 1986, 25, 6114–6121.

    Article  CAS  Google Scholar 

  117. T. Iwaki, C. Torigoe, M. Noji and M. Nakanishi, Antibodies for Fluorescent Molecular Rotors, Biochemistry, 1993, 32, 7589–7592.

    Article  CAS  PubMed  Google Scholar 

  118. M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos and E. A. Theodorakis, New fluorescent probes for the measurement of cell membrane viscosity, Chem. Biol., 2001, 8, 123–131.

    Article  CAS  PubMed  Google Scholar 

  119. J. A. Dix and A. S. Verkman, Pyrene excimer mapping in cultured fibroblasts by ratio imaging and time-resolved microscopy, Biochemistry, 1990, 29, 1949–1953.

    Article  CAS  PubMed  Google Scholar 

  120. M. Viard, J. Gallay, M. Vincent and M. Paternostre, Origin of Laurdan Sensitivity to the Vesicle-to-Micelle Transition of Phospholipid-Octylglucoside System: A Time-Resolved Fluorescence Study, Biophys. J., 2001, 80, 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. S. T. Hess, E. D. Sheets, A. Wagenknecht-Wiesner and A. A. Heikal, Quantitative Analysis of the Fluorescence Properties of Intrinsically Fluorescent Proteins in Living Cells, Biophys. J., 2003, 85, 2566–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. S. Jakobs, V. Subramaniam, A. Schonle, T. M. Jovin and S. W. Hell, EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy, FEBS Lett., 2000, 479, 131–135.

    Article  CAS  PubMed  Google Scholar 

  123. R. Swaminathan, C. P. Hoang and A. S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J., 1997, 72, 1900–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. D. Toptygin, Effects of the Solvent Refractive Index and Its Dispersion on the Radiative Decay Rate and Extinction Coefficient of a Fluorescent Solute, J. Fluoresc., 2003, 13, 201–219.

    Article  CAS  Google Scholar 

  125. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814–820.

    Article  CAS  Google Scholar 

  126. K. Suhling, D. M. Davis, Z. Petrášek, J. Siegel and D. Phillips, The influence of the refractive index on EGFP fluorescence lifetimes in mixtures of water and glycerol, Proc. Soc. Photo. Opti. Instrum. Eng., 2001, 4259, 92–101.

    CAS  Google Scholar 

  127. D. M. Davis, Assembly of the immunological synapse for T cells and NK cells, Trends Immunol., 2002, 23, 356–363.

    Article  CAS  PubMed  Google Scholar 

  128. D. M. Davis and M. L. Dustin, What is the importance of the immunological synapse?, Trends Immunol., 2004, 25, 323–327.

    Article  CAS  PubMed  Google Scholar 

  129. D. M. Davis, Molecular recognition of disease at natural killer cell immune synapses, Sci. Prog., 2000, 83, 303–316.

    CAS  PubMed  Google Scholar 

  130. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, G. Müller, The spatial variation of the refractive index in biological cells, Phys. Med. Biol., 1996, 41, 369–382.

    Article  CAS  PubMed  Google Scholar 

  131. S. Johnsen and E. A. Widder, The physical basis of transparency in biological tissue: Ultrastructure and the minimization of light scattering, J. Theor. Biol., 1999, 199, 181–198.

    Article  CAS  PubMed  Google Scholar 

  132. B. Treanor, P. M. P. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. A. Neil, D. Phillips, D. M. Davis and P. M. W. French, Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse, J. Microsc., 2004, in press.

    Google Scholar 

  133. G. H. Patterson, J. Lippincott-Schwartz, A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells, Science, 2002, 297, 1873–1876.

    Article  CAS  PubMed  Google Scholar 

  134. L. Giordano, T. M. Jovin, M. Irie, E. A. Jares-Erijman, Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET), J. Am. Chem. Soc., 2002, 124, 7481–7489.

    Article  CAS  PubMed  Google Scholar 

  135. M. Green, Semiconductor Quantum Dots as Biological Imaging Agents, Angew. Chem., 2004, 43, 4129–4131.

    Article  CAS  Google Scholar 

  136. T. M. Jovin, Quantum dots finally come of age, Nat. Biotechnol., 2003, 21, 32–33.

    Article  CAS  PubMed  Google Scholar 

  137. G. Schlegel, J. Bohnenberger, I. Potapova and A. Mews, Fluorescence Decay Time of Single Semiconductor Nanocrystals, Phys. Rev. Lett., 2002, 88, 137401–137900.

    Article  CAS  PubMed  Google Scholar 

  138. B. R. Fisher, H. J. Eisler, N. E. Stott and M. G. Bawendi, Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes, J. Phys. Chem. B, 2004, 108, 143–148.

    Article  CAS  Google Scholar 

  139. M. A. Rizzo, G. H. Springer, B. Granada and D. W. Piston, An improved cyan fluorescent protein variant useful for FRET, Nat. Biotechnol., 2004, 22, 445–449.

    Article  CAS  PubMed  Google Scholar 

  140. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis and T. Wilson, Time-domain whole-field fluorescence lifetime imaging with optical sectioning, J. Microsc., 2001, 203, 246–257.

    Article  CAS  PubMed  Google Scholar 

  141. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis and T. Wilson, Whole-field optically sectioned fluorescence lifetime imaging, Opt. Lett., 2000, 25, 1361–1363.

    Article  CAS  PubMed  Google Scholar 

  142. K. Suhling, R. W. Airey and B. L. Morgan, Minimization of fixed pattern noise in photon event counting imaging, Rev. Sci. Instrum., 2002, 73, 2917–2922.

    Article  CAS  Google Scholar 

  143. K. Suhling, R. W. Airey and B. L. Morgan, Optimisation of centroiding algorithms for photon event counting imaging, Nucl. Instrum. Methods, 1999, 437, 393–418.

    Article  CAS  Google Scholar 

  144. F. E. McCann, K. Suhling, L. M. Carlin, K. Eleme, S. B. Taner, K. Yanagi, B. Vanherberghen, P. M. W. French and D. M. Davis, Imaging immune surveillance by T cells and NK cells, Immunol. Rev., 2002, 189, 179–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Suhling.

Additional information

Dedicated to Professor Hiroshi Masuhara on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhling, K., French, P.M.W. & Phillips, D. Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4, 13–22 (2005). https://doi.org/10.1039/b412924p

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b412924p

Navigation