Skip to main content
Log in

Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O

  • Full Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A CuO incorporated TiO2 catalyst was found to be an active photocatalyst for the reduction of H2O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO2 and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient interparticle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO2/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO2/CuO gains the required overvoltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. ≈ 5-10% (w/w).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  2. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, Sustained water cleavage by visible light, J. Am. Chem. Soc., 1981, 103, 6324–6329.

    Article  CAS  Google Scholar 

  3. S. Tabata, H. Nishida, Y. Masaki, K. Tabata, Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system, Catal. Lett., 1995, 34, 245–249.

    Article  CAS  Google Scholar 

  4. K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system, Chem. Phys. Lett., 1997, 277, 387–391.

    Article  CAS  Google Scholar 

  5. G. R. Bamwenda, K. Sayama, H. Arakawa, The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3-Fe2+-Fe3+ aqueous suspension, J. Photochem. Photobiol., A, 1999, 122, 175–183.

    Article  CAS  Google Scholar 

  6. T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, Unique Effects of Iron(iii) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide, J. Phys. Chem. B, 1997, 101, 6415–6419.

    Article  CAS  Google Scholar 

  7. A. Kudo, A. Nagane, I. Tsuji, K. Kato, H2 Evolution from Aqueous Potassium Sulfite Solutions under Visible Light Irradiation over a Novel Sulfide Photocatalyst NaInS2 with a Layered Structure, Chem. Lett., 2002, 882–883.

    Google Scholar 

  8. K. Domen, J. N. Kondo, M. Hara, T. Takata, Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts, Bull. Chem. Soc. Jpn., 2000, 73, 1307–1331.

    Article  CAS  Google Scholar 

  9. T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites, Chem. Mater., 1997, 9, 1063–1064.

    Article  CAS  Google Scholar 

  10. A. Kudo, K. Sayama, A. Tanaka, K. Asakuara, K. Domen, K. Maruya, T. Onishi, Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism, J. Catal., 1989, 120, 337–352.

    Article  CAS  Google Scholar 

  11. R. Abe, K. Sayama, K. Domen, H. Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator, Chem. Phys. Lett., 2001, 344, 339–344.

    Article  CAS  Google Scholar 

  12. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis, J. Photochem. Photobiol., A, 2002, 148, 77.

    Article  Google Scholar 

  13. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation, Chem. Commun., 2001, 2416–2417.

    Google Scholar 

  14. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 2001, 414, 625–627.

    Article  CAS  Google Scholar 

  15. Energy Resources through Photochemistry and Catalysis, ed. M. Gratzel, Academic Press, London, 1983, p. 145.

  16. S. Claesson, and B. Holmstrom, in Solar Energy-Photochemical Processes Available for Energy Conversion, National Swedish Board for Energy Source Development, Uppsala, 1982, pp. 305–310.

    Google Scholar 

  17. N. Alonso-Vante, H. Colell, H. Tributsch, Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem., 1993, 97, 7381–7384.

    Article  CAS  Google Scholar 

  18. E. R. Kötz, S. Stucki, Ruthenium dioxide as a hydrogen-evolving cathode, J. Appl. Electrochem., 1987, 17, 1190–1197.

    Article  Google Scholar 

  19. P. Salvador, N. Alonso-Vante, H. Tributsch, Photoelectrocatalytic Study of Water Oxidation at n-RuS2 Electrodes, J. Electrochem. Soc., 1998, 145, 216–225.

    Article  Google Scholar 

  20. G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama, H. Arakawa, The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors, Appl. Catal., A, 2001, 205, 117–128.

    Article  CAS  Google Scholar 

  21. A. Harriman, and M. A. West, in Photogeneration of Hydrogen, Academic Press, 1982, p. 54.

    Google Scholar 

  22. K. Hashimoto, T. Kawai, T. Sakata, Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation, J. Phys. Chem., 1984, 88, 4083–4088.

    Article  CAS  Google Scholar 

  23. J. Handman, A. Harriman, G. Porter, Photochemical dehydrogenation of ethanol in dilute aqueous solution, Nature, 1984, 307, 534–535.

    Article  CAS  Google Scholar 

  24. M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson, D. S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential, J. Am. Chem. Soc., 1976, 98, 2774–2779.

    Article  CAS  Google Scholar 

  25. J. M. Darwent, H2 Production photosensitized by aqueous semiconductor dispersions, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 1703–1709.

    Article  CAS  Google Scholar 

  26. Y. Li, G. Lu, S. Li, Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2, Appl. Catal., A, 2001, 214, 179–185.

    Article  CAS  Google Scholar 

  27. J. F. McCann, J. O’M. Bockris, Photoelectrochemical properties of n-type In2O3, J. Electrochem. Soc., 1981, 128, 1719–1723.

    Article  CAS  Google Scholar 

  28. A. J. Bard, and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, New York, 1st edn, 1980, pp. 577–696.

    Google Scholar 

  29. R. Fretwell, P. Douglas, Nanocrystalline-TiO2-Pt photo-electrochemical cells-UV induced hydrogen evolution from aqueous solutions of alcohols, Photochem. Photobiol. Sci., 2002, 1, 793–798.

    Article  CAS  Google Scholar 

  30. E. Smotkin, A. J. Bard, A. Campion, M. A. Fox, T. Mallouk, S. E. Webber, J. M. White, Bipolar titanium dioxide/platinum semiconductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting, J. Phys. Chem., 1986, 90, 4604–4607.

    Article  CAS  Google Scholar 

  31. Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method, Catal. Commun., 2005, 6, 313–319.

    Article  Google Scholar 

  32. W. Stumm, and J. J. Morgan, Aquatic Chemistry, John Wiley & Sons, New York, 1996, pp. 760–817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bandara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandara, J., Udawatta, C.P.K. & Rajapakse, C.S.K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4, 857–861 (2005). https://doi.org/10.1039/b507816d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b507816d

Navigation