Skip to main content
Log in

Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photooxidation of sulfur-containing amino acids and derivatives readily occurs upon visible-light irradiation in the presence of flavins. The sulfur moiety seems pivotal for interaction, as was determined from kinetic analyses using laser flash photolysis spectroscopy. After photooxidation, the resulting radical intermediates were characterized by addition to a spin trap, followed by electron paramagnetic resonance spectroscopy and evaluation of the coupling constants. The presence of the proposed radical intermediates was strongly supported by the identification of the reaction products using mass spectrometry. Accordingly, feasible degradation pathways for various sulfur-containing amino acids and derivatives were proposed. It was finally proven that flavin-induced photoproduction of sulfhydryl radicals and recombination with a 3-methylbut-2-enyl radical, derived from the photodegradation of hop-derived isohumulones, are decisive in the formation of beer lightstruck flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lintner, in Lehrbuch der Bierbrauerei, Verlag Vieweg und Sohn, Braunschweig, Germany, 1875, p. 343.

    Google Scholar 

  2. F. Gunst, M. Verzele, On the sunstruck flavour of beer, J. Inst. Brew., 1978, 84, 291–292.

    Article  CAS  Google Scholar 

  3. A. J. Irwin, L. Bordeleau, R. L. Barker, Model studies and flavor threshold determination of 3-methyl-2-butene-1-thiol in beer, J. Am. Soc. Brew. Chem., 1993, 51, 1–3.

    CAS  Google Scholar 

  4. D. De Keukeleire, Interplay of photochemistry and beer: How lightstruck flavor is formed and how it can be prevented, The Spectrum, 2001, 1, 1–10.

    Google Scholar 

  5. Y. Kuroiwa, H. Hashimoto, Studies on hops with reference to their role in the evolution of sunstruck flavor of beer, Rep. Res. Lab Kirin Brew. Co. Ltd., 1961, 4, 35–40.

    Google Scholar 

  6. Y. Kuroiwa, N. Hashimoto, H. Hashimoto, E. Kobuko, K. Nakagawa, Factors essential for the evolution of sunstruck flavour, Proc. Am. Soc. Brew. Chem., 1963, 181–193.

    Google Scholar 

  7. W. J. Simpson, Studies on the sensitivity of lactic-acid bacteria to hop bitter acids, J. Inst. Brew., 1993, 5, 405–411.

    Article  Google Scholar 

  8. D. C. Clarck, P. J. Wilde, D. R. Wilson, The effect of pre-isomerized hop extract on the properties of model protein stabilized foams, J. Inst. Brew., 1991, 3, 169–172.

    Article  Google Scholar 

  9. C. S. Burns, A. Heyerick, D. De Keukeleire, M. D. E. Forbes, Mechanism for formation of the lightstruck flavor in beer revealed by time-resolved electron paramagnetic resonance, Chem.–Eur. J., 2001, 7, 4553–4561.

    Article  CAS  PubMed  Google Scholar 

  10. A. Heyerick, Y. Zhao, P. Sandra, K. Huvaere, F. Roelens, D. De Keukeleire, Photolysis of hop-derived trans-iso-α-acids and trans-tetrahydroiso-α-acids: product identification in relation to the lightstruck flavour of beer, Photochem. Photobiol. Sci., 2003, 2, 306–314.

    Article  CAS  PubMed  Google Scholar 

  11. M. G. Duyvis, R. Hilhorst, C. Laane, D. J. Evans, D. J. M. Schmedding, Role of riboflavin in beer flavor instability: determination of levels of riboflavin and its origin in beer by fluorometric apoprotein titration, J. Agric. Food Chem., 2002, 6, 1548–1552.

    Article  CAS  Google Scholar 

  12. M. S. Grodowski, B. Veyret, K. Weiss, Photochemistry of flavins. II. Photophysical, properties of alloxazines and isoalloxazines, Photochem. Photobiol., 1977, 26, 341–352.

    Article  CAS  Google Scholar 

  13. P. F. Heelis, B. J. Parsons, G. O. Phillips, J. F. McKellar, A laser flash-photolysis study of nature of flavin mononucleotide triplet-states and reactions of neutral form with amino acids, Photochem. Photobiol., 1978, 28, 169–173.

    Article  CAS  Google Scholar 

  14. K. Kino, I. Saito, H. Sugiyama, Product analysis of GG-specific photooxidation of DNA via electron transfer: 2-aminoimidazolone as a major guanine oxidation product, J. Am. Chem. Soc., 1998, 120, 7373–7374.

    Article  CAS  Google Scholar 

  15. C.-Y. Lu, S.-D. Yao, N.-Y. Lin, Photooxidation of 2′-deoxyguanosine 5′-monophosphate (dGMP) by flavin adenine dinucleotide (FAD) via electron transfer: a laser photolysis study, Chem. Phys. Lett., 2000, 330, 389–396.

    Article  CAS  Google Scholar 

  16. C.-Y. Lu, W.-Z. Lin, W.-F. Wang, Z.-H. Han, S.-D. Yao, N.-Y. Lin, Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study, Phys. Chem. Chem. Phys., 2000, 2, 329–334.

    Article  CAS  Google Scholar 

  17. C.-Y. Lu, Y.-Y. Liu, Electron transfer oxidation of tryptophan and tyrosine by triplet states and oxidized radicals of flavin sensitizers: a laser flash photolysis study, Biochim. Biophys. Acta, 2002, 1571, 71–76.

    Article  CAS  PubMed  Google Scholar 

  18. D. R. Cardoso, P. Homem-De-Mello, K. Olsen, A. B. F. Da Silva, D. W. Franco, L. H. Skibsted, Deactivation of triplet-excited riboflavin by purine derivatives: Important role of uric acid in light-induced oxidation of milk sensitized by riboflavin, J. Agric. Food Chem., 2005, 9, 3679–3684.

    Article  CAS  Google Scholar 

  19. D. R. Cardoso, D. W. Franco, K. Olsen, M. L. Andersen, L. H. Skibsted, Reactivity of bovine whey proteins, peptides, and amino acids toward triplet riboflavin as studied by laser flash photolysis, J. Agric. Food Chem., 2004, 21, 6602–6606.

    Article  CAS  Google Scholar 

  20. K. Huvaere, K. Olsen, M. L. Andersen, L. H. Skibsted, A. Heyerick, D. De Keukeleire, Riboflavin-sensitized photooxidation of isohumulones and derivatives, Photochem. Photobiol. Sci., 2004, 34, 337–340.

    Article  CAS  PubMed  Google Scholar 

  21. K. Huvaere, B. Sinnaeve, J. Van Bocxlaer, D. De Keukeleire, Photooxidative degradation of beer bittering principles: product analysis with respect to lightstruck flavour formation, Photochem. Photobiol. Sci., 2004, 39, 854–858.

    Article  CAS  PubMed  Google Scholar 

  22. A. Heyerick, K. Huvaere, M. D. E. Forbes, D. De Keukeleire, Fate of flavins in sensitized photodegradation of isohumulones and reduced derivatives: Studies on formation of radicals via EPR combined with detailed product analyses, Photochem. Photobiol. Sci., 2005, 45, 412–419.

    Article  CAS  PubMed  Google Scholar 

  23. K. Huvaere, M. L. Andersen, L. H. Skibsted, A. Heyerick, D. De Keukeleire, Radicaloid-type oxidative decomposition of beer bittering agents revealed, Chem.–Eur. J., 2003, 9, 4693–4699.

    Article  CAS  PubMed  Google Scholar 

  24. K. Huvaere, M. L. Andersen, L. H. Skibsted, A. Heyerick, D. De Keukeleire, Photooxidative degradation of beer bittering principles: a key step on the route to lightstruck flavor formation in beer, J. Agric. Food Chem., 2005, 5, 1489–1494.

    Article  CAS  Google Scholar 

  25. S. Sakuma, Y. Rikimaru, K. Kobayashi, M. Kowaka, Sunstruck flavor formation in beer, J. Am. Soc. Brew. Chem., 1991, 49, 162–165.

    CAS  Google Scholar 

  26. D. D. Perrin and B. Dempsey, in Buffers for pH and Metal Ion Control, Chapman and Hall, London, UK, 1979.

    Book  Google Scholar 

  27. D. R. Duling, Simulation of multiple isotropic spin-trap EPR-spectra, J. Magn. Reson., Ser. B, 1994, 104, 105–110.

    Article  CAS  Google Scholar 

  28. P. F. Heelis, The photophysical and photochemical properties of flavins (isoalloxazines), Chem. Soc. Rev., 1982, 11, 15–39.

    Article  CAS  Google Scholar 

  29. J. D. Coyle, R. R. Hill and D. R. Roberts, in Light, Chemical Change and Life: A Source Book in Photochemistry, The Open University Press, Milton Keynes, UK, 1982, p. 57.

    Google Scholar 

  30. G. D. Fasman, in Handbook of Biochemistry and Molecular Biology: Physical and Chemical Data, CRC Press, Cleveland, Ohio, USA, 3rd edn, 1976, vol. 1, pp. 305–351.

    Google Scholar 

  31. J. T. Edsall, in Biophysical Chemistry, Academic Press, New York, New York, USA, 1958.

    Google Scholar 

  32. K.-D. Asmus, M. Göbl, K.-O. Hiller, S. Mahling, J. Mönig, S∴N and S∴O three-electron-bonded radicals and radical cations in aqueous solutions, J. Chem. Soc., Perkin Trans. 2, 1985, 641–646.

    Google Scholar 

  33. L. K. Steffen, R. S. Glass, M. Sabahi, G. S. Wilson, C. Schöneich, S. Mahling, K.-D. Asmus, ˙OH radical induced decarboxylation of amino acids. Decarboxylation vs. bond formation in radical intermediates, J. Am. Chem. Soc., 1991, 113, 2141–2145.

    Article  CAS  Google Scholar 

  34. M. Goez, J. Rozwadowski, B. Marciniak, CIDNP spectroscopic observation of (S∴N)+ radical cations with a two-center three-electron bond during the photooxidation of methionine, Angew. Chem., Int. Ed., 1998, 5, 628–630.

    Article  Google Scholar 

  35. O. B. Morozova, S. E. Korchak, R. Z. Sagdeev, A. V. Yurkovskaya, Time-resolved chemically induced dynamic nuclear polarization studies of structure and reactivity of methionine radical cations in aqueous solution as a function of pH, J. Phys. Chem. A, 2005, 45, 10459–10466.

    Article  CAS  Google Scholar 

  36. H. Yashiro, R. C. White, A. V. Yurkovskaya, M. D. E. Forbes, Methionine radical cation: Structural studies as a function of pH using X- and Q-band time-resolved electron paramagnetic resonance spectroscopy, J. Phys. Chem. A, 2005, 26, 5855–5864.

    Article  CAS  Google Scholar 

  37. B. Mile, C. C. Rowlands, P. D. Sillman, M. Fildes, The EPR spectra of thiyl radical spin adducts produced by photolysis of disulfides in the presence of 2,4,6-tri-tert-butylnitrosobenzene and 5,5-dimethyl-1-pyrroline N-oxide, J. Chem. Soc., Perkin Trans. 2, 1992, 1431–1437.

    Google Scholar 

  38. C. W. M. Kay, R. Feicht, K. Schulz, P. Sadewater, A. Sancar, A. Bacher, K. Möbius, G. Richter, S. Weber, EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase, Biochemistry, 1999, 51, 16740–16748.

    Article  CAS  Google Scholar 

  39. C. Mottley, K. Toy, R. P. Mason, Oxidation of thiol drugs and biochemicals by the lactoperoxidase/hydrogen peroxide system, Mol. Pharmacol., 1987, 31, 417–421.

    CAS  PubMed  Google Scholar 

  40. M. J. Davies, L. G. Forni, S. L. Shuter, Electron spin resonance and pulse radiolysis studies on the spin trapping of sulfur-centered radicals, Chem.-Biol. Interact., 1987, 61, 177–188.

    Article  CAS  PubMed  Google Scholar 

  41. S. Mahling, K.-D. Asmus, R. S. Glass, M. Hojjatie, G. S. Wilson, Neighboring group participation in radicals: Pulse radiolysis studies on radicals with sulfur-oxygen interaction, J. Org. Chem., 1987, 17, 3717–3724.

    Article  Google Scholar 

  42. M. Goez, J. Rozwadowski, B. Marciniak, Photoinduced electron transfer, decarboxylation, and radical fragmentation of cysteine derivatives: A chemically induced dynamic nuclear polarization study, J. Am. Chem. Soc., 1996, 118, 2882–2891.

    Article  CAS  Google Scholar 

  43. H. Taniguchi, An electron spin resonance study of organosulfur radicals produced in electron-irradiated aqueous solutions. Spin trapping with nitromethane aci-anion and 2-methyl-2-nitrosopropane, J. Phys. Chem., 1984, 88, 6245–6250.

    Article  CAS  Google Scholar 

  44. B. H. Stock, J. Schreiber, C. Guenat, R. P. Mason, J. R. Bend, T. E. Eling, Evidence for a free radical mechanism of styrene–glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidase, J. Biol. Chem., 1986, 34, 15915–15922.

    Article  Google Scholar 

  45. A. S. W. Li, K. B. Cummings, H. P. Roethling, G. R. Buettner, C. F. Chignell, A spin trapping database implemented on the IBM PC/AT, J. Magn. Reson., 1988, 79, 140–142.

    Google Scholar 

  46. S. F. Yang, H. S. Ku, H. K. Pratt, Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide, J. Biol. Chem., 1967, 22, 5274–5280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis De Keukeleire.

Additional information

This paper was published as part of the special issue in honour of the late Professor George S. Hammond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huvaere, K., Andersen, M.L., Storme, M. et al. Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor. Photochem Photobiol Sci 5, 961–969 (2006). https://doi.org/10.1039/b609337j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b609337j

Navigation