Skip to main content

Advertisement

Log in

Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A promising clinical application of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PP IX) is fluorescence detection and photodynamic treatment of residual tumour tissue during surgical resection of high grade malignant glioma. U373 MG human glioblastoma cells were used as a model system to study the relation between intracellular location and photodynamic efficacy of 5-ALA-induced PP IX in more detail. Therefore, ultra-sensitive fluorescence microscopy, using either optical excitation of whole cells or selective excitation of the plasma membrane by an evanescent electromagnetic field, was combined with quantitative measurements of intracellular porphyrin amount and phototoxicity. Glioblastoma cells accumulated PP IX to a moderate extent as compared to T47D breast cancer cells (high accumulation) or OV2774 ovarian cancer cells (low accumulation). Although photodynamic inactivation of the different cell lines (decreasing in the order T47D > U373 MG > OV2774) seemed to be directly related to PP IX accumulation, examination of the data in more detail revealed that photodynamic efficacy per photosensitizer molecule (PE) was about two times higher in glioblastoma and ovarian cancer cells as compared to breast cancer cells. The different photodynamic efficacy of PP IX was related to the different intracellular location. In contrast to breast cancer cells where PP IX fluorescence was localized in small granules, PP IX fluorescence in glioblastoma cells and ovarian cancer cells originated mainly from cellular membranes. Thus, the intracellular location of PP IX in a predominantly lipophilic environment, characterized by a comparably high photostability (probed by photobleaching and photoproduct formation) and a lower degree of porphyrin aggregation (probed previously by fluorescence decay kinetics), seems to be the key factor for high photodynamic efficacy of 5-ALA-induced PP IX. In the case of OV2774 ovarian cancer cells, however, a low PP IX accumulation limited cell inactivation upon irradiation, whereas the results obtained for glioblastoma cells are encouraging to develop PDT to an additional therapeutic option for the treatment of tumour margins in patients who underwent fluorescence-guided resection of high grade malignant glioma after 5-ALA administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, Photosensitizers: therapy and detection of malignant tumours, Photochem. Photobiol., 1987, 45, 879–889.

    Article  CAS  Google Scholar 

  2. Z. Malik, H. Lugaci, Destruction of erythroleukaemic cells by photoinactivation of endogenous porphyrins, Br. J. Cancer, 1987, 56, 589–596.

    Article  CAS  Google Scholar 

  3. J. C. Kennedy, R. H. Pottier, D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience, J. Photochem. Photobiol., B, 1990, 6, 143–148.

    Article  CAS  Google Scholar 

  4. M. Kondo, N. Hirota, T. Takaoka, M. Kajiwara, Heme-biosynthesis enzyme activities and porphyrin accumulation in normal and hepatoma cell lines of rats, Cell Biol. Toxicol., 1993, 9, 95–105.

    Article  CAS  Google Scholar 

  5. Y. Ohgari, Y. Nakayasu, S. Kitajima, M. Sawamoto, H. Mori, O. Shimokawa, H. Matsui, S. Taketani, Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin, Biochem. Pharmacol., 2005, 71, 42–49.

    Article  CAS  Google Scholar 

  6. S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, J. Y. Chen, Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester, Cancer Lett., 2003, 200, 123–131.

    Article  CAS  Google Scholar 

  7. F. Duffner, R. Ritz, D. Freudenstein, M. Weller, K. Dietz, J. Wessels, Specific intensity imaging for glioblastoma and neural cell cultures with 5-aminolevulinic acid-derived protoporphyrin IX, J. Neuro-Oncol., 2005, 71, 107–111.

    Article  CAS  Google Scholar 

  8. W. Stummer, S. Stocker, A. Novotny, A. Heimann, O. Sauer, O. Kempski, N. Plesnila, J. Wietzorrek, H. J. Reulen, In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid, J. Photochem. Photobiol., B, 1998, 45, 160–169.

    Article  CAS  Google Scholar 

  9. K. M. Hebeda, A. E. Saarnak, M. Olivo, H. J. Sterenborg, J. G. Wolbers, 5-Aminolevulinic acid induced endogenous fluorescence in 9L and C6 brain tumours and in normal rat brain, Acta Neurochir. (Wien), 1998, 140, 503–512.

    Article  CAS  Google Scholar 

  10. W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Götz, A. Götz, R. Kiefmann, H. J. Reulen, Intraoperative detection of malignant gliomas by 5-aminolevulinic acid induced porphyrin fluorescence, Neurosurg., 1998, 42, 518–526.

    Article  CAS  Google Scholar 

  11. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, H. J. Reulen, Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients, J. Neurosurg., 2000, 93, 1003–1013.

    Article  CAS  Google Scholar 

  12. A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, B. C. Wilson, Increased brain tumor resection using fluorescence image guidance in a preclinical model, Lasers Surg. Med., 2004, 35, 181–190.

    Article  Google Scholar 

  13. S. J. Madsen, C. H. Sun, B. J. Tromberg, V. P. Wallace, H. Hirschberg, Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid, Photochem. Photobiol., 2000, 72, 128–134.

    Article  CAS  Google Scholar 

  14. H. Hirschberg, C. H. Sun, B. J. Tromberg, S. J. Madsen, ALA- and ALA-esters-mediated photodynamic therapy of human glioma spheroids, J. Neuro-Oncol., 2002, 57, 1–7.

    Article  Google Scholar 

  15. B. Olzowy, C. S. Hundt, S. Stocker, K. Bise, H. J. Reulen, W. Stummer, Photoirradiation therapy of experimental malignant glioma with 5-aminilevulinic acid, J. Neurosurg., 2002, 97, 970–976.

    Article  CAS  Google Scholar 

  16. S. Ito, W. Rachinger, H. Stepp, H. J. Reulen, W. Stummer, Oedema formation in experimental photo-irradiation of brain tumors using 5-ALA, Acta Neurochir. (Wien), 2005, 147, 57–65.

    Article  CAS  Google Scholar 

  17. H. Hirschberg, D. R. Sorensen, E. Angell-Petersen, Q. Peng, B. Tromberg, C. H. Sun, S. Spetalen, S. Madsen, Repetitive photodynamic therapy of malignant brain tumors, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 261–280.

    Article  CAS  Google Scholar 

  18. E. Angell-Petersen, S. Spetalen, S. J. Madsen, C. H. Sun, Q. Peng, S. W. Carper, M. Sioud, H. Hirschberg, Influence of light fluence rate on the effects of photodynamic therapy in an orthopic rat glioma model, J. Neurosurg., 2006, 104, 109–117.

    Article  Google Scholar 

  19. A. Fautrel, C. Chesné, A. Guillouzo, G. de Sousa, M. Placidi, R. Rahmani, F. Braut, J. Pichon, H. Hoellinger, P. Vintézou, I. Diarte, C. Melcion, A. Cordier, G. Lorenzon, M. Benicourt, B. Vannier, R. Fournex, A. F. Peloux, N. Bichet, D. Gouy, J. P. Cano, R. Lounes, A multicentre study of acute in vitro cytotoxicity in rat liver cells, Toxicol. in vitro, 1991, 5, 543–547.

    Article  CAS  Google Scholar 

  20. A. L. Vandenbogaerde, J. F. Cuveele, P. Proot, B. E. Himpens, W. J. Merlevede, P. A. de Witte, Differential cytotoxic effects induced after photosensitization by hypericin, J. Photochem. Photobiol., B, 1997, 38, 136–142.

    Article  CAS  Google Scholar 

  21. K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, H. Schneckenburger, Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device, J. Microsc., 2003, 211, 19–29.

    Article  CAS  Google Scholar 

  22. H. Schneckenburger, M. H. Gschwend, R. Sailer, H.-P. Mock, W. S. L. Strauss, Time-gated fluorescence microscopy in molecular and cellular biology, Cell Mol. Biol, 1998, 44, 795–805.

    CAS  PubMed  Google Scholar 

  23. C. G. Coates, D. J. Denvir, N. G. McHale, K. G. Thornbury and M. A. Hollywood, Ultrasensitivity, speed and resolution: optimizing low-light microscopy with the back-illuminated electron-multiplying CCD, in Confocal, Multiphoton, and Nonlinear Microscopic Imaging, ed. T. Wilson, The International Society for Optical Engineering, Bellingham, USA, 2003, vol. 5139, pp. 56–66.

  24. H. Schneckenburger, M. Wagner, M. Kretzschmar, W. S. L. Strauss, R. Sailer, Laser-assisted fluorescence microscopy for measuring cell membrane dynamics, Photochem. Photobiol. Sci., 2004, 3, 817–822.

    Article  CAS  Google Scholar 

  25. P. Weber, M. Wagner, H. Schneckenburger, Microfluorometry of cell membrane dynamics, Cytometry, 2006, 69A, 185–188.

    Article  Google Scholar 

  26. J. Moan, G. Streckyte, S. Bagdonas, O. Bech, K. Berg, Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid, Int. J. Cancer, 1997, 70, 90–97.

    Article  CAS  Google Scholar 

  27. J. D. Dysart, M. S. Patterson, Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PP IX PDT of MLL cells under oxygenated and hypoxic conditions, Photochem. Photobiol. Sci., 2006, 5, 73–81.

    Article  CAS  Google Scholar 

  28. W. S. L. Strauss, R. Sailer, M. H. Gschwend, H. Emmert, R. Steiner, H. Schneckenburger, Selective examination of plasma associated photosensitizers using total internal reflection fluorescence spectroscopy (TIRFS)-correlation between photobleaching and photodynamic efficacy of protoporphyrin IX, Photochem. Photobiol., 1998, 67, 363–369.

    Article  CAS  Google Scholar 

  29. R. Sailer, W. S. L. Strauss, H. Emmert, M. Wagner, R. Steiner and H. Schneckenburger, Photodynamic Efficacy and Spectroscopic Properties of 5-ALA Induced Protoporphyrin IX in Human Glioblastoma Cells, in Optical Methods for Tumour Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy, ed. D. Kessel, The International Society for Optical Engineering, Bellingham, USA, 2005, vol. 5689, pp. 123–129.

  30. H. Schneckenburger, K. König, K. Kunzi-Rapp, C. Westphal-Frösch, A. Rück, Time-resolved in vivo fluorescence of photosensitizing porphyrins, J. Photochem. Photobiol., B, 1993, 21, 143–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Schneckenburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sailer, R., Strauss, W.S.L., Wagner, M. et al. Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines. Photochem Photobiol Sci 6, 145–151 (2007). https://doi.org/10.1039/b611715e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b611715e

Navigation