Skip to main content

Advertisement

Log in

Photoinduced charge and energy transfer involving fullerene derivatives

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this feature article, a brief overview over the photoinduced energy and charge transfer mechanisms involving fullerenes will be presented. The photoinduced charge separation between organic donor and acceptor molecules is the basic photophysical mechanism for natural photosynthesis and nearly all organic solar cell concepts. We will give a short introduction to the mechanisms of excited state charge transfer and resonant energy transfer and present examples of relevant applications in organic optoelectronics and photodynamic tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318, 162–163.

    Article  CAS  Google Scholar 

  2. H. W. Kroto, C60: Buckminsterfullerene, the Celestial Sphere that Fell to Earth, Angew. Chem., Int. Ed. Engl., 1992, 31, 111–129.

    Article  Google Scholar 

  3. W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Solid C60: a new form of carbon, Nature, 1990, 347, 354–358.

    Article  Google Scholar 

  4. F. Wudl, The Chemical Properties of Buckminsterfullerene (C60) and the Birth and Infancy of Fulleroids, Acc. Chem. Res., 1992, 25, 157–161.

    Article  CAS  Google Scholar 

  5. A. Hirsch, Principles of fullerene reactivity, Top. Curr. Chem., 1999, 199, 1–65.

    Article  CAS  Google Scholar 

  6. M. Prato, Fullerene materials, Top. Curr. Chem., 1999, 199, 173–187.

    Article  CAS  Google Scholar 

  7. S. Bosi, T. Da Ros, G. Spalluto and M. Prato, Fullerene derivatives: an attractive tool for biological applications, Eur. J. Med. Chem., 2003, 38(11–12), 913–923.

    Article  CAS  PubMed  Google Scholar 

  8. S. Saito and A. Oshiyama, Cohesive mechanisms and energy bands of solid C60), Phys. Rev. Lett., 1991, 66(20), 2637.

    Article  CAS  PubMed  Google Scholar 

  9. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard and R. M. Fleming, C60 thin film transistors, Appl. Phys. Lett., 1995, 67(1), 121–123.

    Article  CAS  Google Scholar 

  10. B. T. Singh, N. Marjanovic, G. Matt, S. Guenes, N. S. Sariciftci, A. Montaigne, A. Andreev, H. Sitter, R. Schwoediauer and S. Bauer, High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films, Org. Electron., 2005, 6, 105–110.

    Article  CAS  Google Scholar 

  11. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch and C. J. Brabec, Solution-processed organic n-type thin-film transistors, Adv. Mater., 2003, 15(24), 2084.

    Article  CAS  Google Scholar 

  12. P. M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, Two different fullerenes have the same cyclic voltammetry, J. Am. Chem. Soc., 1991, 113, 1050.

    Article  CAS  Google Scholar 

  13. S. Morita, A. A. Zakhidov and K. Yoshino, Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence, Solid State Communications, 1992, 82(4), 249–252.

    Article  CAS  Google Scholar 

  14. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 1992, 258, 1474.

    Article  CAS  PubMed  Google Scholar 

  15. N. S. Sariciftci and A. J. Heeger, Photophysics, Charge Separation and Associated Device Applications of Conjugated Polymer/Fullerene Composites, in Handbook of Organic Conductive Molecules and Polymers, ed. H. S. Nalwa, John Wiley & Sons, New York, 1997, vol. 1, pp. 413–455.

    Google Scholar 

  16. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Plastic Solar Cells, Adv. Funct. Mater., 2001, 11(1), 15–26.

    Article  CAS  Google Scholar 

  17. H. Hoppe and N. S. Sariciftci, Organic solar cells: an overview, J. Mater. Res., 2004, 19, 1924.

    Article  CAS  Google Scholar 

  18. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, Photophysical Properties of C60, J. Phys. Chem., 1991, 95, 11–12.

    Article  CAS  Google Scholar 

  19. J. W. Arbogast and C. S. Foote, Photophysical Properties of C70, J. Am. Chem. Soc., 1991, 113, 8886–8889.

    Article  CAS  Google Scholar 

  20. W. J. Blau, H. J. Byrne, D. J. Cardin, T. J. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, D. R. M. Walton, Large infrared nonlinear optical response of C60, Phys. Rev. Lett., 1991, 67, 1423–1425.

    Article  CAS  PubMed  Google Scholar 

  21. M. Cha, N. S. Sariciftci, A. J. Heeger, J. C. Hummelen and F. Wudl, Enhanced Non-linear Absorption and Optical Limiting in Conducting Polymer/Methanofullerene Charge Transfer Films, Appl. Phys. Lett., 1995, 67, 3850.

    Article  CAS  Google Scholar 

  22. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Physik., 1948, 6, 55.

    Article  Google Scholar 

  23. T. Förster, Transfer mechanisms of electronic excitation, Discuss. Faraday Soc., 1959, 7–17.

    Google Scholar 

  24. X. Hu and K. Schulten, How nature harvests sunlight, Phys. Today, 1997, 50, 28 and references therein.

    Article  CAS  Google Scholar 

  25. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman and R. Y. Tsien, Review—The fluorescent toolbox for assessing protein location and function, Science, 2006, 312, 217–224 and references therein.

    Article  CAS  PubMed  Google Scholar 

  26. T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach and J. Feldmann, Exciton Recycling in Graded Gap Nanocrystal Structures, Nano Lett., 2004, 4(9), 1599.

    Article  CAS  Google Scholar 

  27. W. T. Tsang, A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam, Appl. Phys. Lett., 1981, 39, 134.

    Article  CAS  Google Scholar 

  28. S. Z. Wang, R. M. Gao, F. M. Zhou and M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, J. Mater. Chem., 2004, 14(4), 487–493.

    Article  CAS  Google Scholar 

  29. R. D. Scurlock, B. Wang, P. R. Ogilby, J. R. Sheats and R. L. Clough, Singlet Oxygen as a Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer, J. Am. Chem. Soc., 1995, 117, 10194.

    Article  CAS  Google Scholar 

  30. G. D. Hale, S. J. Oldenburg and N. J. Halas, Effects of photo-oxidation on conjugated polymer films, Appl. Phys. Lett., 1997, 71(11), 1483–1485.

    Article  CAS  Google Scholar 

  31. J. Morgado, R. H. Friend and F. Cacialli, Environmental aging of poly(u-phenylenevinylene) based light-emitting diodes, Synth. Met., 2000, 114, 189–196.

    Article  CAS  Google Scholar 

  32. H. Neugebauer, C. Brabec, J. C. Hummelen and N. S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Energy Mater. Sol. Cells, 2000, 61, 35–42.

    Article  CAS  Google Scholar 

  33. T. Da Ros and M. Prato, Medicinal chemistry with fullerenes and fullerene derivatives, Chem. Commun., 1999, 8, 663–669.

    Article  Google Scholar 

  34. Y. Tabata and Y. Ikada, Biological functions of fullerene, Pure Appl. Chem., 1999, 71(11), 2047–2053.

    Article  CAS  Google Scholar 

  35. B. Vileno, A. Sienkiewicz, M. Lekka, A. J. Kulik and L. Forro, In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C-60, Carbon, 2004, 42(5–6), 1195–1198.

    Article  CAS  Google Scholar 

  36. F. Prat, R. Stackow, R. Bernstein, W. Qian, Y. Rubin and C. S. Foote, Triplet-State Properties and Singlet Oxygen Generation in a Homologous Series of Functionalized Fullerene Derivatives, J. Phys. Chem. A, 1999, 103, 7230.

    Article  CAS  Google Scholar 

  37. M. E. Milanesio, M. G. Alvarez, V. Rivarola, J. J. Silber and E. N. Durantini, Porphyrin-fullerene C-60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy, Photochem. Photobiol., 2005, 81(4), 891–897.

    Article  CAS  PubMed  Google Scholar 

  38. T. C. Lin, S. J. Chung, K. S. Kim, X. P. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar and P. N. Prasad, Organics and polymers with high two-photon activities and their applications. Polymers For Photonics Applications II, Adv. Polym. Sci., 2003, 161, 157–193.

    Article  CAS  Google Scholar 

  39. P. A. van Hal, J. Knol, B. M. W. Langeveld-Voss, S. C. J. Meskers, J. C. Hummelen, R. A. J. Janssen, Photoinduced singlet and triplet energy transfer in fullerene–oligothiophene–fullerene triads, Synth. Met., 2001, 116(1–3), 123–127.

    Google Scholar 

  40. P. A. van Hal, J. Knol, B. M. W. Langeveld-Voss, S. C. J. Meskers, J. C. Hummelen, R. A. J. Janssen, Photoinduced Energy and Electron Transfer in Fullerene–Oligothiophene–Fullerene Triads, J. Phys. Chem. A, 2000, 104, 5974–5988.

    Google Scholar 

  41. I. B. Martini, B. Ma, T. Da Ros, R. Helgeson, F. Wudl and B. J. Schwartz, Ultrafast competition between energy and charge transfer in a functionalized electron donor/fullerene derivative, Chem. Phys. Lett., 2000, 327(5–6), 253–262.

    Article  CAS  Google Scholar 

  42. J. L. Hua, F. S. Meng, F. Ding, F. Y. Li and H. Tian, Novel soluble and thermally-stable fullerene dyad containing perylene, J. Mater. Chem., 2004, 14(12), 1849–1853.

    Article  CAS  Google Scholar 

  43. Y. Liu, M. A. Summers, S. R. Scully and M. D. McGehee, Resonance energy transfer from organic chromophores to fullerene molecules, J. Appl. Phys., 2006, 99, 093521.

    Article  CAS  Google Scholar 

  44. J. R. Lakowicz, in Principles of Fluorescence Spectroscopy, Plenum, New York, 2nd edn, 1999.

    Book  Google Scholar 

  45. Photoinduced Electron Transfer, Parts A and D, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988.

    Google Scholar 

  46. M. J. Rice and Y. N. Gartstein, Theory of photoinduced charge transfer in a molecularly doped conjugated polymer, Phys. Rev. B, 1996, 53, 10764.

    Article  CAS  Google Scholar 

  47. M. W. Wu and E. M. Conwell, Theory of photoinduced charge transfer in weakly coupled donor–acceptor conjugated polymers: application to an MEH–PPV:CN–PPV pair, Chem. Phys., 1998, 227, 11.

    Article  CAS  Google Scholar 

  48. E. H. A. Beckers, S. C. J. Meskers, A. P. H. J. Schenning, Z. J. Chen, F. Wurthner, P. Marsal, D. Beljonne, J. Cornil, R. A. J. Janssen, Influence of intermolecular orientation on the photoinduced charge transfer kinetics in self-assembled aggregates of donor–acceptor arrays, J. Am. Chem. Soc., 2006, 128(2), 649–657.

    Article  CAS  PubMed  Google Scholar 

  49. M. N. Paddon-Row, Investigating Long-Range Electron-Transfer Processes with Rigid, Covalently Linked Donor–(Norbornylogous Bridge)–Acceptor Systems, Acc. Chem. Res., 1994, 27, 18–25.

    Article  CAS  Google Scholar 

  50. D. M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  PubMed  Google Scholar 

  51. J. Jortner, Temperature Dependent Activation Energy for Electron Transfer Between Biological Molecules, J. Chem. Phys., 1976, 64, 4860.

    Article  CAS  Google Scholar 

  52. M. Bixon and J. Jortner, Electron Transfer. From Isolated Molecules to Biomolecules, Adv. Chem. Phys., 1999, 106, 35.

    CAS  Google Scholar 

  53. B. Kraabel, J. C. Hummelen, D. Vacar, D. Moses, N. S. Sariciftci, A. J. Heeger and F. Wudl, Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes, J. Chem. Phys., 1996, 104, 4267.

    Article  CAS  Google Scholar 

  54. J. G. Müller, J. M. Lupton, J. Feldmann, U. Lemmer, M. C. Scharber, N. S. Sariciftci, C. J. Brabec and U. Scherf, Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells, Phys. Rev. B, 2005, 72, 195208.

    Article  CAS  Google Scholar 

  55. G. Zoriniants, V. Dyakonov, M. Scharber, C. J. Brabec, R. A. J. Janssen, J. C. Hummelen and N. S. Sariciftci, Light Induced ESR Studies in Conjugated Polymer–Fullerene Composites, Synth. Met., 1999, 102, 1241–1242.

    Article  CAS  Google Scholar 

  56. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Semiconducting polymer–buckminsterfullerene heterojunctions: Diodes, photodiodes and photovoltaic cells, Appl. Phys. Lett., 1993, 62, 585.

    Article  CAS  Google Scholar 

  57. T. Tsuzuki, Y. Shirota, J. Rostalski and D. Meissner, The Effect of Fullerene Doping on Photoelectric Conversion Using Titanyl Phthalocyanine and a Perylene Pigment, Sol. Energy Mater. Sol. Cells, 2000, 61, 1–8.

    Article  CAS  Google Scholar 

  58. K. C. Hwang and D. Mauzerall, Photoinduced electron transport across a lipid bilayer mediated by C70, Nature, 1993, 361, 138–140.

    Article  CAS  PubMed  Google Scholar 

  59. Y. Wang, Photoconductivity of fullerene-doped polymers, Nature, 1992, 356, 585–587.

    Article  CAS  Google Scholar 

  60. A. de la Escosura, M. V. Martinez-Diaz, D. M. Guldi and T. Torres, Stabilization of Charge-Separated States in Phthalocyanines–Fullerene Ensembles through Supramolecular Donor–Acceptor Interactions, J. Am. Chem. Soc., 2006, 128(12), 4112–4118.

    Article  PubMed  CAS  Google Scholar 

  61. A. de la Escosura, M. V. Martinez-Diaz, P. Thordarson, A. E. Rowan, R. J. M. Nolte and T. Torres, Donor–acceptor phthalocyanine nanoaggregates, J. Am. Chem. Soc., 2003, 125(40), 12300–12308.

    Article  PubMed  CAS  Google Scholar 

  62. E. Arici, N. S. Sariciftci and D. Meissner, Hybrid Solar Cells based on Nanoparticles of CulnS2 in Organic Matrices, Adv. Funct. Mater., 2003, 13(2), 165–171.

    Article  CAS  Google Scholar 

  63. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, 2.5% Efficient Organic Solar Cells, Appl. Phys. Lett., 2001, 78, 841–843.

    Article  CAS  Google Scholar 

  64. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner and N. S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene based bulk-heterojunction solar cells, Adv. Funct. Mater., 2004, 14, 1005.

    Article  CAS  Google Scholar 

  65. H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M. C. Lux-Steiner and N. S. Sariciftci, Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells, Nano Lett., 2005, 5(2), 269–274.

    Article  CAS  PubMed  Google Scholar 

  66. H. Hoppe and N. S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem., 2006, 16, 45–61.

    Article  CAS  Google Scholar 

  67. R. Koeppe, N. S. Sariciftci, P. A. Troshin and R. N. Lyubovskaya, Complexation of pyrrolidinofullerenes and zinc–phthalocyanine in a bilayer organic solar cell structure, Appl. Phys. Lett., 2005, 87(24), 244102.

    Article  CAS  Google Scholar 

  68. P. A. Troshin, S. I. Troyanov, G. N. Boiko, R. N. Lyubovskaya, A. N. Lapshin and N. F. Goldshleger, Efficient 2 + 3 cycloaddition approach to synthesis of pyridinyl based [60]fullerene ligands, Fullerene Nanotube Carbon Nanostruct., 2004, 12(1–2), 413–419.

    CAS  Google Scholar 

  69. R. Koeppe, P. A. Troshin, A. Fuchsbauer, R. N. Lyubovskaya and N. S. Sariciftci, Photoluminescence Studies on the Supramolecular Interactions Between a Pyrollidinofullerene and Zinc–Phthalocyanine Used in Organic Solar Cells, Fullerene Nanotube Carbon Nanostruct., 2006, 14(2–3), 441–446.

    Article  CAS  Google Scholar 

  70. N. Marjanovic, B. Singh, G. Dennler, S. Guenes, H. Neugebauer, N. S. Sariciftci, R. Schwödiauer and S. Bauer, Photoresponse of Organic Field-Effect Transistors based on Conjugated Polymer/Fullerene Blends, Org. Electron., 2006, 7, 188–194.

    Article  CAS  Google Scholar 

  71. N. Marjanovic, B. Singh, G. Dennler, S. Guenes, R. Koeppe, H. Neugebauer, N. S. Sariciftci and S. Bauer, Photo-induced phenomena in Organic Field-Effect Phototransistors based on Conjugated Polymer/Fullerene Blends and Organic Dielectric, Org. Optoelectron. Photonics II, Proc. SPIE, 2006, 6192, 61921D–1.

    Article  CAS  Google Scholar 

  72. C. Schlebusch, J. Morenzin, B. Kessler and W. Eberhardt, Organic photoconductors with C60 for Xerography, Carbon, 1999, 37, 717–720.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Koeppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppe, R., Sariciftci, N.S. Photoinduced charge and energy transfer involving fullerene derivatives. Photochem Photobiol Sci 5, 1122–1131 (2006). https://doi.org/10.1039/b612933c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b612933c

Navigation