Skip to main content
Log in

Visible light inactivation of bacteria and fungi by modified titanium dioxide

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Visible light induced photocatalytic inactivation of bacteria (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis) and fungi (Candida albicans, Aspergillus niger) was tested. Carbon-doped titanium dioxide and TiO2 modified with platinum(iv) chloride complexes were used as suspension or immobilised at the surface of plastic plates. A biocidal effect was observed under visible light irradiation in the case of E. coli in the presence of both photocatalysts. The platinum(iv) modified titania exhibited a higher inactivation effect, also in the absence of light. The mechanism of visible light induced photoinactivation is briefly discussed. The observed detrimental effect of photocatalysts on various microorganism groups decreases in the order: E. coli > S. aureusE. faecalis C. albicansA. niger. This sequence results most probably from differences in cell wall or cell membrane structures in these microorganisms and is not related to the ability of catalase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion Free Radical Biol. Med. 1999 27 294–300.

    Article  CAS  Google Scholar 

  2. K. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst J. Photochem. Photobiol., A 2000 134 139–142.

    Article  CAS  Google Scholar 

  3. W. Macyk, A. Franke and G. Stochel, Metal compounds and small molecules activation - case studies Coord. Chem. Rev. 2005 249 2437–2457.

    Article  CAS  Google Scholar 

  4. K. Szaciłowski, W. Macyk, A. Drzewiecka-Matuszek, M. Brindell and G. Stochel, Bioinorganic photochemistry: frontiers and mechanisms Chem. Rev. 2005 105 2647–2694.

    Article  Google Scholar 

  5. A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis. Fundamentals and Applications, BKC Inc. Tokyo, 1999.

    Google Scholar 

  6. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis Chem. Rev. 1995 95 69–96.

    Article  CAS  Google Scholar 

  7. A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results Chem. Rev. 1995 95 735–758.

    Article  CAS  Google Scholar 

  8. Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin film: dynamic view of the active oxygen species responsible for the effect J. Photochem. Photobiol., A 1997 106 51–56.

    Article  CAS  Google Scholar 

  9. K. Sunada, T. Watanabe and K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film J. Photochem. Photobiol., A 2003 156 227–233.

    Article  CAS  Google Scholar 

  10. Z. Huang, P.-C. Maness, D. M. Blade, E. J. Wolfram, A. L. Smolinski and W. J. Jacoby, Bactericidal mode of titanium dioxide photocatalysis J. Photochem. Photobiol., A 2000 130 163–170.

    Article  CAS  Google Scholar 

  11. C. Srinivasan and N. Somasundaram, Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO2Curr. Sci. 2003 85 25.

    Google Scholar 

  12. P.-C. Maness, S. Smolinski, D. Blake, Z. Huang, A. J. Wolfrum and W. A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism Appl. Environ. Microbiol. 1999 4094–4098.

    Google Scholar 

  13. T. Matsunaga, T. Tomoda, T. Nakajima and H. Wake, Photochemical sterilization of microbial cells by semiconductor powder FEMS Microbiol. Lett. 1985 29 211–214.

    Article  CAS  Google Scholar 

  14. M. F. Dadjour, C. Ogino, S. Matsumura and N. Shimizu, Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO2Biochem. Eng. J. 2005 25 243–248.

    Article  CAS  Google Scholar 

  15. T. Saito, T. Iwase and T. Morioka, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on Streptococci mutans J. Photochem. Photobiol., B 1992 14 369–379.

    Article  CAS  Google Scholar 

  16. M. Cho, H. Chung, W. Choi and J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection Water Res. 2004 38 1069–1077.

    Article  CAS  Google Scholar 

  17. M. Cho, H. Chung, W. Choi and J. Yoon, Different inactivation behaviours of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection Appl. Environ. Microbiol. 2005 71 270–275.

    Article  CAS  Google Scholar 

  18. J. C. Yu, Y. Xie, H. Y. Tang, L. Zhang, H. C. Chan and J. Zhao, Visible light-assisted bactericidal effect of metalphtalocyanine-sensitized titanium dioxide films J. Photochem. Photobiol., A 2003 156 235–241.

    Article  CAS  Google Scholar 

  19. K.-J. Shieh, M. Li, Y.-H. Lee, S.-D. Sheu, Y.-T. Liu, Y.-C. Wang, Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light Nanomed. Nanotechnol. Biol. Med. 2006 2 121–126.

    Article  CAS  Google Scholar 

  20. S. Sakthivel and H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide Angew. Chem., Int. Ed. 2003 42 4908–4911.

    Article  CAS  Google Scholar 

  21. W. Macyk, G. Burgeth and H. Kisch, Photoelectrochemical properties of platinum(iv)-chloride surface modified TiO2Photochem. Photobiol. Sci. 2003 2 322–328.

    Article  CAS  Google Scholar 

  22. G. Burgeth and H. Kisch, Photocatalytic and photoelectrochemical properties of titania-chloroplatinate(iv) Coord. Chem. Rev. 2002 230 40–47.

    Article  Google Scholar 

  23. A. G. Rincon and C. Pulgarin, Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration Appl. Catal., B 2003 44 263–284.

    Article  CAS  Google Scholar 

  24. A. G. Rincon and C. Pulgarin, Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater Catal. Today 2005 101 331–344.

    Article  CAS  Google Scholar 

  25. P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt, Bergey’s manual of systematic bacteriology, Williams and Wilkins, Baltimore, MD, 1986.

    Google Scholar 

  26. K. P. Kuhn, I. F. Chaberny, K. Massholder, M. Stickler, V. W. Benz, H.-G. Sontag and L. Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light Chemosphere 2003 53 71–77.

    Article  CAS  Google Scholar 

  27. O. Seven, B. Dindar, S. Aydemir, D. Metin, M. A. Ozinel and S. Icli, Solar photocatalytic disinfection of a group bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust J. Photochem. Photobiol., A 2004 165 103–107.

    Article  CAS  Google Scholar 

  28. L. Zang, C. Lange, W. F. Maier, I. Abraham, S. Storck and H. Kisch, Amorphous microporous titania modified with platinum(iv) chloride - a new type of hybrid photocatalyst for visible light detoxification J. Phys. Chem. B 1998 102 10765.

    Article  CAS  Google Scholar 

  29. L. Zang, W. Macyk, C. Lange, W. F. Maier, C. Antonius, D. Meissner and H. Kisch, Visible light detoxification and charge generation by transition metal chloride modified titania Chem.-Eur. J. 2000 6 379–384.

    Article  CAS  Google Scholar 

  30. W. Macyk and H. Kisch, Photosensitization of crystalline and amorphous titanium dioxide by platinum(iv) chloride surface complexes Chem.-Eur. J. 2001 7 1862–1867.

    Article  CAS  Google Scholar 

  31. H. Kisch, G. Burgeth and W. Macyk, Visible light photocatalysis by a titania transition metal complex Adv. Inorg. Chem. 2004 56 241–259.

    Article  CAS  Google Scholar 

  32. B. Rosenberg, L. Van Camp, E. B. Grimley and A. J. Thomson, The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(iv) complexes J. Biol. Chem. 1967 242 1327–1352.

    Google Scholar 

  33. T. Gebel, H. Lantzsch, K. Plessow and H. Dunkelberg, Genotoxicity of platinum and palladium compounds in human and bacterial cells Mutat. Res. 1997 389 183–190.

    Article  CAS  Google Scholar 

  34. H. H. Kohl, S. Haghighi and C. A. McAulife, Inhibitory study of DNA, RNA and protein synthesis in Escherichia coli by platinum containing complexes Chem. Biol. Interact. 1980 29 327–333.

    Article  CAS  Google Scholar 

  35. P. G. Calzavara-Pinton, M. Venturini and R. Sala, A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin J. Photochem. Photobiol., B 2005 78 1–6.

    Article  CAS  Google Scholar 

  36. J. Lonnen, S. Kilvington, S. C. Kehoe, F. Al-Touati and K. G. McGuigan, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water Water Res. 2005 39 877–883.

    Article  CAS  Google Scholar 

  37. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder Bull. Chem. Soc. Jpn. 1985 58 2015–2022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piotr B. Heczko or Wojciech Macyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitoraj, D., Jańczyk, A., Strus, M. et al. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem Photobiol Sci 6, 642–648 (2007). https://doi.org/10.1039/b617043a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617043a

Navigation