Skip to main content
Log in

Photodynamic therapy with fullerenes

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fullerenes are a class of closed-cage nanomaterials made exclusively from carbon atoms. A great deal of attention has been focused on developing medical uses of these unique molecules especially when they are derivatized with functional groups to make them soluble and therefore able to interact with biological systems. Due to their extended π-conjugation they absorb visible light, have a high triplet yield and can generate reactive oxygen species upon illumination, suggesting a possible role of fullerenes in photodynamic therapy. Depending on the functional groups introduced into the molecule, fullerenes can effectively photoinactivate either or both pathogenic microbial cells and malignant cancer cells. The mechanism appears to involve superoxide anion as well as singlet oxygen, and under the right conditions fullerenes may have advantages over clinically applied photosensitizers for mediating photodynamic therapy of certain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 1985, 318, 162–163.

    CAS  Google Scholar 

  2. S. Bosi, T. Da Ros, G. Spalluto and M. Prato, Fullerene derivatives: an attractive tool for biological applications, Eur. J. Med. Chem., 2003, 38, 913–923.

    Article  CAS  PubMed  Google Scholar 

  3. A. W. Jensen, S. R. Wilson and D. I. Schuster, Biological applications of fullerenes, Bioorg. Med. Chem., 1996, 4, 767–779.

    Article  CAS  PubMed  Google Scholar 

  4. N. Tagmatarchis and H. Shinohara, Fullerenes in medicinal chemistry and their biological applications, Mini Rev. Med. Chem., 2001, 1, 339–348.

    CAS  PubMed  Google Scholar 

  5. N. Levi, R. R. Hantgan, M. O. Lively, D. L. Carroll and G. L. Prasad, C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects, J. Nanobiotechnol., 2006, 4, 14.

    Article  CAS  Google Scholar 

  6. B. Belgorodsky, L. Fadeev, J. Kolsenik and M. Gozin, Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein, ChemBioChem, 2006, 7, 1783–1789.

    Article  CAS  PubMed  Google Scholar 

  7. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson and F. Moussa, [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity, Nano Lett., 2005, 5, 2578–2585.

    Article  CAS  PubMed  Google Scholar 

  8. C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West and V. L. Colvin, Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials, 2005, 26, 7587–7595.

    Article  CAS  PubMed  Google Scholar 

  9. E. Nakamura and H. Isobe, Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience, Acc. Chem. Res., 2003, 36, 807–815.

    Article  CAS  PubMed  Google Scholar 

  10. D. Pantarotto, N. Tagmatarchis, A. Bianco and M. Prato, Synthesis and biological properties of fullerene-containing amino acids and peptides, Mini Rev. Med. Chem., 2004, 4, 805–814.

    CAS  PubMed  Google Scholar 

  11. A. Bagno, S. Claeson, M. Maggini, M. L. Martini, M. Prato and G. Scorrano, 60]Fullerene as a substituent, Chemistry (Weinheim an der Bergstrasse, Germany), 2002, 8, 1015–1023.

    CAS  Google Scholar 

  12. N. Martin, M. Maggini and D. M. Guldi, Fullerenes 2000 - Volume 9: Functionalized Fullerenes, Proceedings of the International Symposium, 2000.

    Google Scholar 

  13. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, 2003, 3, 380–387.

    CAS  PubMed  Google Scholar 

  14. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  15. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part two-cellular signalling, cell metabolism and modes of cell death, Photodiagn. Photodyn. Ther. 2, 2005.

  16. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther., 2005, 2, 91–106.

    Article  CAS  Google Scholar 

  17. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.

    Article  CAS  Google Scholar 

  18. P. Agostinis, E. Buytaert, H. Breyssens and N. Hendrickx, Regulatory pathways in photodynamic therapy induced apoptosis, Photochem. Photobiol. Sci., 2004, 3, 721–729.

    Article  CAS  PubMed  Google Scholar 

  19. J. Moan and Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  20. A. Jesionek and H. von Tappenier, Zur behandlung der hautcarcinomit mit fluorescierenden stoffen, Muench. Med. Wochneshr., 2042, 47, 1903.

    Google Scholar 

  21. T. J. Dougherty, A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute, J. Clin. Laser Med. Surg., 1996, 14, 219–221.

    Article  CAS  PubMed  Google Scholar 

  22. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  23. P. Baas, I. van Mansom, H. van Tinteren, F. A. Stewart and N. van Zandwijk, Effect of N-acetylcysteine on Photofrin-induced skin photosensitivity in patients, Lasers Surg. Med., 1995, 16, 359–367.

    Article  CAS  PubMed  Google Scholar 

  24. A. Orenstein, G. Kostenich, L. Roitman, Y. Shechtman, Y. Kopolovic, B. Ehrenberg and Z. Malik, A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model, Br. J. Cancer, 1996, 73, 937–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. D. Spikes, Chlorins as photosensitizers in biology and medicine, J. Photochem. Photobiol., B, 1990, 6, 259–274.

    Article  CAS  Google Scholar 

  26. D. Kessel and P. Thompson, Purification and analysis of hematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography, Photochem. Photobiol., 1987, 46, 1023–1025.

    Article  CAS  PubMed  Google Scholar 

  27. R. W. Boyle and D. Dolphin, Structure and biodistribution relationships of photodynamic sensitizers, Photochem. Photobiol., 1996, 64, 469–485.

    Article  CAS  PubMed  Google Scholar 

  28. C. J. Gomer, Preclinical examination of first and second generation photosensitizers used in photodynamic therapy, Photochem. Photobiol., 1991, 54, 1093–1107.

    Article  CAS  PubMed  Google Scholar 

  29. E. S. Nyman and P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.

    Article  CAS  Google Scholar 

  30. M. R. Detty, S. L. Gibson and S. J. Wagner, Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med. Chem., 2004, 47, 3897–3915.

    Article  CAS  PubMed  Google Scholar 

  31. P. Agostinis, A. Vantieghem, W. Merlevede and P. A. de Witte, Hypericin in cancer treatment: more light on the way, Int. J. Biochem. Cell Biol., 2002, 34, 221–241.

    Article  CAS  PubMed  Google Scholar 

  32. C. S. Foote, Photophysical and photochemical properties of fullerenes, Top. Curr. Chem., 1994, 169, 347–363.

    Article  CAS  Google Scholar 

  33. A. Greer, Christopher Foote’s discovery of the role of singlet oxygen [1O2 (1Δg)] in photosensitized oxidation reactions, Acc. Chem. Res., 2006, 39, 797–804.

    Article  CAS  PubMed  Google Scholar 

  34. R. Schmidt, Photosensitized generation of singlet oxygen, Photochem. Photobiol., 2006, 82, 1161–1177.

    Article  CAS  PubMed  Google Scholar 

  35. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, Photophysical properties of C60, J. Phys. Chem. A, 1991, 95, 11–12.

    Article  CAS  Google Scholar 

  36. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu and T. Nagano, Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2˙ versus1O2, J. Am. Chem. Soc., 2003, 125, 12803–12809.

    Article  CAS  PubMed  Google Scholar 

  37. C. S. Foote, Definition of Type-I and Type-II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659–659.

    Article  CAS  PubMed  Google Scholar 

  38. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  39. R. Koeppe and N. S. Sariciftci, Photoinduced charge and energy transfer involving fullerene derivatives, Photochem. Photobiol. Sci., 2006, 5, 1122–1131.

    Article  CAS  PubMed  Google Scholar 

  40. D. M. Guldi and M. Prato, Excited-state properties of C(60) fullerene derivatives, Acc. Chem. Res., 2000, 33, 695–703.

    Article  CAS  PubMed  Google Scholar 

  41. J. W. Arbogast, C. S. Foote and M. Kao, Electron-transfer to triplet C-60, J. Am. Chem. Soc., 1992, 114, 2277–2279.

    Article  CAS  Google Scholar 

  42. N. Miyata, Y. Yamakoshi and I. Nakanishi, Reactive species responsible for biological actions of photoexcited fullerenes, J. Pharm. Soc. Jpn., 2000, 120, 1007–1016.

    Article  CAS  Google Scholar 

  43. C. Yu, T. Canteenwala, M. E. El-Khouly, Y. Araki, K. Pritzker, O. Ito, B. C. Wilson and L. Y. Chiang, Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S, J. Mater. Chem., 2005, 15, 1857–1864.

    Article  CAS  Google Scholar 

  44. P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radical Biol. Med., 2007, 43, 711–719.

    Article  CAS  Google Scholar 

  45. G. P. Tegos, T. N. Demidova, D. Arcila-Lopez, H. Lee, T. Wharton, H. Gali and M. R. Hamblin, Cationic fullerenes are effective and selective antimicrobial photosensitizers, Chem. Biol., 2005, 12, 1127–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Tokuyama, S. Yamago and E. Nakamura, Photoinduced biochemical activity of fullerene carboxylic acid, J. Am. Chem. Soc., 1993, 115, 7918–7919.

    Article  CAS  Google Scholar 

  47. Y. Z. An, C. B. Chen, J. L. Anderson, D. S. Sigman, C. S. Foote and Y. Rubin, Sequence-specific modification of guanosine in DNA by a C60-linked deoxyoligonucleotide: evidence for a non-singlet oxygen mechanism, Tetrahedron, 1996, 52, 5179–5189.

    Article  CAS  Google Scholar 

  48. A. S. Boutorine, H. Tokuyama, M., T., H., I., E., N., C. Helene, Fullerene-oligonucleotide conjugates: photo-induced sequence-specific DNA cleavage, Angew. Chem., Int. Ed. Engl., 1994, 33, 2462–2465.

    Article  Google Scholar 

  49. I. Nakanishi, S. Fukuzumi, T. Konishi, K. Ohkubo, M. Fujitsuka, O. Ito and N. Miyata, DNA cleavage via electron transfer from NADH to molecular oxygen photosensitized by γ-cyclodextrin-bicapped C60, in Fullerenes for the New Millennium, ed. P. V. Kamat, D. M. Guldi and D. M. Kadish, The Electrochemical Society, Pennigton, NJ, 2001, vol. 11, pp. 138–151.

    Google Scholar 

  50. Y. Yamakoshi, S. Sueyoshi and N. Miyata, Biological activity of photoexcited fullerene, Kokuritsu Iyakuhin Shokuhin Eisei Kenkyujo hokoku = Bulletin of National Institute of Health Sciences, 1999, 117, 50–60.

    CAS  Google Scholar 

  51. Y. N. Yamakoshi, T. Yagami, S. Sueyoshi and N. Miyata, Acridine Adduct of [60]Fullerene with Enhanced DNA-Cleaving Activity, J. Org. Chem., 1996, 61, 7236–7237.

    Article  CAS  PubMed  Google Scholar 

  52. Y. Liu, Y. L. Zhao, Y. Chen, P. Liang and L. Li, A water-soluble beta cyclodextrin derivative possessing a fullerene tether as an efficient photodriven DNA-cleavage reagent, Tetrahedron Lett., 2005, 46, 2507–2511.

    Article  CAS  Google Scholar 

  53. A. Ikeda, Y. Doi, M. Hashizume, J. Kikuchi and T. Konishi, An extremely effective DNA photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer, J. Am. Chem. Soc., 2007, 129, 4140–4141.

    Article  CAS  PubMed  Google Scholar 

  54. N. Sera, H. Tokiwa and N. Miyata, Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides, Carcinogenesis, 1996, 17, 2163–2169.

    Article  CAS  PubMed  Google Scholar 

  55. J. P. Kamat, T. P. Devasagayam, K. I. Priyadarsini, H. Mohan and J. P. Mittal, Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes, Chem.-Biol. Interact., 1998, 114, 145–159.

    Article  CAS  PubMed  Google Scholar 

  56. J. P. Kamat, T. P. Devasagayam, K. I. Priyadarsini and H. Mohan, Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications, Toxicology, 2000, 155, 55–61.

    Article  CAS  PubMed  Google Scholar 

  57. X. L. Yang, C. Huang, X. G. Qiao, L. Yao, D. X. Zhao and X. Tan, Photo-induced lipid peroxidation of erythrocyte membranes by a bis-methanophosphonate fullerene, Toxicol. In Vitro, 2007.

    Google Scholar 

  58. F. Kasermann and C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antiviral Res., 1997, 34, 65–70.

    Article  CAS  PubMed  Google Scholar 

  59. F. Kasermann and C. Kempf, Buckminsterfullerene and photodynamic inactivation of viruses, Rev. Med. Virol., 1998, 8, 143–151.

    Article  CAS  PubMed  Google Scholar 

  60. J. Hirayama, H. Abe, N. Kamo, T. Shinbo, Y. Ohnishi-Yamada, S. Kurosawa, K. Ikebuchi and S. Sekiguchi, Photoinactivation of vesicular stomatitis virus with fullerene conjugated with methoxy polyethylene glycol amine, Biol. Pharm. Bull., 1999, 22, 1106–1109.

    Article  CAS  PubMed  Google Scholar 

  61. Y. L. Lin, H. Y. Lei, Y. Y. Wen, T. Y. Luh, C. K. Chou and H. S. Liu, Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer, Virology, 2000, 275, 258–262.

    Article  CAS  PubMed  Google Scholar 

  62. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  63. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  64. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. T. N. Demidova and M. R. Hamblin, Photodynamic therapy targeted to pathogens, Int. J. Immunopathol. Pharmacol., 2004, 17, 245–254.

    Article  CAS  PubMed  Google Scholar 

  66. T. N. Demidova and M. R. Hamblin, Effect of cell-photosensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. A. Lambrechts, M. C. Aalders, D. H. Langeveld-Klerks, Y. Khayali and J. W. Lagerberg, Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins, Photochem. Photobiol., 2004, 79, 297–302.

    Article  CAS  PubMed  Google Scholar 

  68. R. E. Hancock and A. Bell, Antibiotic uptake into gram-negative bacteria, Eur. J. Clin. Microbiol. Infect. Dis., 1988, 7, 713–720.

    Article  CAS  PubMed  Google Scholar 

  69. M. B. Spesia, M. E. Milanesio and E. N. Durantini, Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C(60) derivatives, Eur. J. Med. Chem., 2007.

    Google Scholar 

  70. W. A. Scrivens, J. M. Tour, K. E. Creek and L. Pirisi, Synthesis of C-14-labeled C-60, its suspension in water, and its uptake by human keratinocytes, J. Am. Chem. Soc., 1994, 116, 4517–4518.

    Article  CAS  Google Scholar 

  71. S. Foley, C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta and C. Larroque, Cellular localisation of a water-soluble fullerene derivative, Biochem. Biophys. Res. Commun., 2002, 294, 116–119.

    Article  CAS  PubMed  Google Scholar 

  72. A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. Midgley and M. Welland, Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography, Environ. Sci. Technol., 2007, 41, 3012–3017.

    Article  CAS  PubMed  Google Scholar 

  73. K. Irie, Y. Nakamura, H. Ohigashi, H. Tokuyama, S. Yamago and E. Nakamura, Photocytotoxicity of water-soluble fullerene derivatives, Biosci., Biotechnol., Biochem., 1996, 60, 1359–1361.

    Article  CAS  Google Scholar 

  74. A. P. Burlaka, Y. P. Sidorik, S. V. Prylutska, O. P. Matyshevska, O. A. Golub, Y. I. Prylutskyy and P. Scharff, Catalytic system of the reactive oxygen species on the C60 fullerene basis, Exp. Oncol., 2004, 26, 326–327.

    CAS  PubMed  Google Scholar 

  75. F. Rancan, S. Rosan, F. Boehm, A. Cantrell, M. Brellreich, H. Schoenberger, A. Hirsch and F. Moussa, Cytotoxicity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells, J. Photochem. Photobiol., B, 2002, 67, 157–162.

    Article  CAS  Google Scholar 

  76. X. L. Yang, C. H. Fan and H. S. Zhu, Photo-induced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism, Toxicol. In Vitro, 2002, 16, 41–46.

    Article  CAS  PubMed  Google Scholar 

  77. F. Rancan, M. Helmreich, A. Molich, N. Jux, A. Hirsch, B. Roder, C. Witt and F. Bohm, Fullerene-pyropheophorbide a complexes as sensitizer for photodynamic therapy: uptake and photo-induced cytotoxicity on Jurkat cells, J. Photochem. Photobiol., B, 2005, 80, 1–7.

    Article  CAS  Google Scholar 

  78. M. E. Milanesio, M. G. Alvarez, V. Rivarola, J. J. Silber and E. N. Durantini, Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy, Photochem. Photobiol., 2005, 81, 891–897.

    Article  CAS  PubMed  Google Scholar 

  79. M. G. Alvarez, C. Prucca, M. E. Milanesio, E. N. Durantini and V. Rivarola, Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line, Int. J. Biochem. Cell Biol., 2006, 38, 2092–2101.

    Article  CAS  PubMed  Google Scholar 

  80. A. Ikeda, Y. Doi, K. Nishiguchi, K. Kitamura, M. Hashizume, J. Kikuchi, K. Yogo, T. Ogawa and T. Takeya, Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene, Org. Biomol. Chem., 2007, 5, 1158–1160.

    Article  CAS  PubMed  Google Scholar 

  81. C. J. Liang-Takasaki, P. H. Makela and L. Leive, Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages, J. Immunol., 1982, 128, 1229–1235.

    CAS  PubMed  Google Scholar 

  82. R. Li, D. J. Bounds, D. Granville, S. H. Ip, H. Jiang, P. Margaron and D. W. Hunt, Rapid induction of apoptosis in human keratinocytes with the photosensitizer QLT0074 via a direct mitochondrial action, Apoptosis, 2003, 8, 269–275.

    Article  CAS  PubMed  Google Scholar 

  83. D. J. Granville, C. M. Carthy, H. Jiang, G. C. Shore, B. M. McManus and D. W. Hunt, Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy, FEBS Lett., 1998, 437, 5–10.

    Article  CAS  PubMed  Google Scholar 

  84. S. Gupta, N. Ahmad and H. Mukhtar, Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis, Cancer Res., 1998, 58, 1785–1788.

    CAS  PubMed  Google Scholar 

  85. D. Kessel, Y. Luo, P. Mathieu and J. J., Jr. Reiners, Determinants of the apoptotic response to lysosomal photodamage, Photochem. Photobiol., 2000, 71, 196–200.

    Article  CAS  PubMed  Google Scholar 

  86. M. G. Alvarez, F. Principe, M. E. Milanesio, E. N. Durantini and V. Rivarola, Photodynamic damages induced by a monocationic porphyrin derivative in a human carcinoma cell line, Int. J. Biochem. Cell Biol., 2005, 37, 2504–2512.

    Article  CAS  PubMed  Google Scholar 

  87. M. F. Ross, T. Da Ros, F. H. Blaikie, T. A. Prime, C. M. Porteous Severina, II, V. P. Skulachev, H. G. Kjaergaard, R. A. Smith and M. P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J., 2006, 400, 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. H. Rottenberg, Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations, J. Membr. Biol., 1984, 81, 127–138.

    Article  CAS  PubMed  Google Scholar 

  89. M. P. Murphy and R. A. Smith, Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 2007, 47, 629–656.

    Article  CAS  PubMed  Google Scholar 

  90. S. M. Hahn, M. E. Putt, J. Metz, D. B. Shin, E. Rickter, C. Menon, D. Smith, E. Glatstein, D. L. Fraker and T. M. Busch, Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy, Clin. Cancer Res., 2006, 12, 5464–5470.

    Article  CAS  PubMed  Google Scholar 

  91. Y. Tabata, Y. Murakami and Y. Ikada, Photodynamic effect of polyethylene glycol-modified fullerene on tumor, Jpn. J. Cancer Res., 1997, 88, 1108–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. J. Liu, S. Ohta, A. Sonoda, M. Yamada, M. Yamamoto, N. Nitta, K. Murata and Y. Tabata, Preparation of PEG-conjugated fullerene containing Gd(3+) ions for photodynamic therapy, J. Controlled Release, 2007, 117, 104–110.

    Article  CAS  Google Scholar 

  93. C. Yu, T. Canteenwala, H. H. Chen, B. J. Chen, M. Canteenwala and L. Y. Chiang, Hexa(sulfobutyl)fullerene-induced photodynamic effect on tumors in vivo and toxicity study in rats, Proc. Electrochem. Soc., 1999, 99, 234–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mroz, P., Tegos, G.P., Gali, H. et al. Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6, 1139–1149 (2007). https://doi.org/10.1039/b711141j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b711141j

Navigation