Skip to main content
Log in

Fluorimetric studies on the binding of 4-(dimethylamino)cinnamic acid with micelles and bovine serum albumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The constrained photophysics of intramolecular charge transfer (ICT) probe 4-(dimethylamino)cinnamic acid (DMACA) was studied in different surfactant systems as well as in presence of model water soluble protein bovine serum albumin (BSA). Binding of the probe in ionic micelles like sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) causes an increase in ICT fluorescence intensity, whereas, in non-ionic TritonX-100 (TX-100) the intensity decreases with a concomitant increase in emission from locally excited (LE) state. The observations were explained in terms of the different binding affinity, location of the probe and also the nature of specific hydrogen bonding interaction in the excited state nonradiative relaxation process of DMACA. The ICT fluorescence emission yield decreases in BSA due to the locking in of the probe buried in the hydrophobic pocket of the protein structure. SDS induced uncoiling of protein and massive cooperative binding between BSA and SDS is manifested by the release of probe molecules in relatively free aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Cohen, T. B. McAnaney, E. S. Park, Y. N. Jan, S. G. Boxer, L. Y. Jan, Probing protein electrostatics with a synthetic fluorescent amino acid, Science, 2002, 296, 1700–1703.

    Article  CAS  PubMed  Google Scholar 

  2. K. Bhattacharyya, Solvation dynamics and proton transfer in supramolecular assemblies, Acc. Chem. Res., 2003, 36, 95–101.

    Article  CAS  PubMed  Google Scholar 

  3. D. Zhong, A. Douhal, A. H. Zewail, Femtosecond studies of protein-ligand hydrophobic binding and dynamics: human serum albumin, Proc. Natl. Acad. Sci. USA, 2000, 97, 14056–14061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. H. Evans, S. DeFeyter, L. Viaene, J. van Stam, F. C. DeSchryver, Biomolecular processes of α-Terthiophene in a ß-Cyclodextrin environment: An exploratory study, J. Phys. Chem., 1996, 100, 2129–2135.

    Article  CAS  Google Scholar 

  5. P. P. Mishra, R. Adhikary, P. Lahiri, A. Dutta, Chlorin p6 as a fluorescent probe for the investigation of surfactant-cyclodextrin interactions, Photochem. Photobiol. Sci., 2006, 5, 741–747.

    Article  CAS  PubMed  Google Scholar 

  6. M. Vasilescu, D. F. Anghel, M. Almgren, P. Hansson, S. Saito, Fluorescence probe study of the interactions between nonionic poly(oxyethylenic) surfactants and poly(acrylic acid) in aqueous solutions, Langmuir, 1997, 13, 6951–6955.

    Article  CAS  Google Scholar 

  7. J. M. Beechem, L. Brand, Time-resolved fluorescence of proteins, Ann. Rev. Biochem., 1985, 54, 43–71.

    Article  CAS  PubMed  Google Scholar 

  8. J. W. Petrich, M. C. Chang, D. B. McDonald, G. R. Fleming, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives, J. Am. Chem. Soc., 1983, 105, 3824–3832.

    Article  CAS  Google Scholar 

  9. J. H. Fendler, Membrane Mimetic Chemistry, Wiley-Interscience, New York, 1982.

    Google Scholar 

  10. Surfactants in Solution, ed. K. L. Mittal and B. Lindman, Plenum, New York, 1984, vol. 1 and 2.

  11. Physics of Amphiphiles, Micelles, Vesicles and Microemulsions, ed. V. De Giorgio and M. Conti, North-Holland, Amsterdam, 1985.

  12. S. Mishima, Y. Ono, Y. Araki, Y. Akao, Y. Nozawa, Two related cinnamic acid derivatives from Brazilian honey bee Propolis, Baccharin and Drupanin, induce growth inhibition in Allografted Sarcoma S-180 in Mice, Biol. Pharma. Bull., 2005, 28, 1025–1030.

    Article  CAS  Google Scholar 

  13. A. R. Kroon, W. D. Hoff, H. P. M. Fennema, J. Gijzen, G.-J. Koomen, J. W. Verhoeven, W. Crielaard, K. J. Hellingwerf, Spectral tuning, fluorescence, and photoactivity in hybrids of photoactive yellow protein, reconstituted with native or modified chromophores, J. Biol. Chem., 1996, 271, 31949–31956.

    Article  CAS  PubMed  Google Scholar 

  14. P. R. Bangal, S. Chakravorti, Photophysics of 4-dimethylamino cinnamic acid in different environments, J. Photochem. Photobiol., A, 1998, 116, 191–202.

    Article  CAS  Google Scholar 

  15. K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Reinterpretation of the anomalous fluorescence of p-N, N-dimethylamino-benzonitrile, Chem. Phys. Lett., 1973, 19, 315–318.

    Article  CAS  Google Scholar 

  16. K. A. Zachariasse, M. Grobys, Th. von der Haar, A. Hebecker, Yu. V. Il’ichev, O. Morawski, I. Rückert, W. Kühnle, Photo-induced intramolecular charge transfer and internal conversion in molecules with a small energy gap between S1 and S2. Dynamics and structure, J. Photochem. Photobiol., A, 1997, 105, 373–383.

    Article  CAS  Google Scholar 

  17. A. MacIejewski, J. Kubicki, K. Dobek, Different sources of 4-aminophthalimide solvation dynamics retardation inside micellar systems, J. Colloid Interface Sci., 2006, 295, 255–263.

    Article  CAS  PubMed  Google Scholar 

  18. P. P. Mishra, A. L. Koner, A. Datta, Interaction of lucifer yellow with cetyltrimethyl ammonium bromide micelles and the consequent suppression of its non-radiative processes, Chem. Phys. Lett., 2004, 400, 128–132.

    Article  CAS  Google Scholar 

  19. A. Mallick, B. Haldar, N. Chattopadhyay, Intramolecular charge transfer in organized assemblies: Fluorescence of 3-acetyl-4-oxo-6,7-dihydro-12 H indolo-[2,3-a] quimolizine in reverse micelles, J. Surface Sci. Technol., 2004, 20, 255–265.

    CAS  Google Scholar 

  20. P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Effect of hydrogen bonding on intramolecular charge transfer in aqueous and non-aqueous reverse micelles, J. Photochem. Photobiol., A, 2004, 167, 23–30.

    Article  CAS  Google Scholar 

  21. Y. Hirose, H. Yui, T. Sawada, The ultrafast relaxation dynamics of a viscosity probe molecule in an AOT-reversed micelle: Contribution of the specific interactions with the local environment, J. Phys. Chem. B, 2004, 108, 9070–9076.

    Article  CAS  Google Scholar 

  22. T. A. Fayed, Probing of micellar and biological systems using 2-(p-dimethylaminostyryl)benzoxazole: An intramolecular charge transfer fluorescent probe, Colloids Surfaces A: Physicochem. Eng. Aspects, 2004, 236, 171–177.

    Article  CAS  Google Scholar 

  23. R. Das, D. Guha, S. Mitra, S. Kar, S. Lahiri, S. Mukherjee, Intramolecular charge transfer as probing reaction: Fluorescence monitoring of protein-surfactant interaction, J. Phys. Chem. A, 1997, 101, 4042–4047.

    Article  CAS  Google Scholar 

  24. E. B. Tada, O. A. El Seoud, Solvatochromism in organized assemblies: effects of the sphere-to-rod micellar transition, Prog. Colloid Polymer Sci., 2002, 121, 101–109.

    Article  CAS  Google Scholar 

  25. G. Cojocariu, A. Natansohn, Intramolecular Complexation in Aqueous Solutions of an End-Capped Poly(Ethylene Glycol), J. Phys. Chem. B, 2002, 106, 11737–11745.

    Article  CAS  Google Scholar 

  26. A. K. Singh, M. Darshi, Fluorescence probe properties of intramolecular charge transfer diphenylbutadienes in micelles and vesicles, Biochim. Biophys. Acta-Biomembranes, 2002, 1563, 35–44.

    Article  CAS  Google Scholar 

  27. H.-R. Park, T. H. Kim, K.-M. Bark, Physicochemical properties of quinolone antibiotics in various environments, Eur. J. Med. Chem., 2002, 37, 443.

    Article  CAS  PubMed  Google Scholar 

  28. M. Viard, J. Gallay, M. Vincent, M. Paternostre, Origin of Laurdan Sensitivity to the Vesicle-to-Micelle Transition of Phospholipid-Octylglucoside System: A Time-Resolved Fluorescence Study, Biophys. J., 2001, 80, 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. A. Adams, M. C. Berman, Kinetics and mechanism of the interaction between human serum albumin and monomeric haemin, Biochem. J., 1980, 191, 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Savu, C. Benassasyag, G. Vallette, N. Christeff, E. Nuney, Mouse a1-Fetoprotein and Albumin, J. Biol. Chem., 1981, 256, 9414–9418.

    Article  CAS  PubMed  Google Scholar 

  31. A. Roda, G. Cappeleri, R. Aldini, E. Roda, L. Barbara, Quantitative aspects of the interaction of bile acids with human serum albumin, J. Lipid Res., 1982, 23, 490–495.

    Article  CAS  PubMed  Google Scholar 

  32. J. S. Stamler, D. J. Singel, J. Loscalzo, Biochemistry of nitric oxide and its redox-activated forms, Science, 1992, 258, 1898–1902.

    Article  CAS  PubMed  Google Scholar 

  33. H. Bian, H. Zhang, Q. Yu, Z. Chen, H. Liang, Studies on the interaction of cinnamic acid with bovine serum albumin, Chem. Pharm. Bull., 2007, 55, 871–875.

    Article  CAS  Google Scholar 

  34. L. Liu, W. R. Hudgins, S. Shack, M. Q. Yin, D. Samid, Cinnamic acid: A natural product with potential use in cancer intervention, Int. J. Cancer, 1995, 62, 345–350.

    Article  CAS  PubMed  Google Scholar 

  35. D. C. Carter, J. X. Ho, Structure of Serum Albumin, Adv. Protein Chem., 1994, 45, 153–203.

    Article  CAS  PubMed  Google Scholar 

  36. T. S. Singh, S. Mitra, Fluorescence behavior of intramolecular charge transfer state in trans-ethyl p-(dimethylamino)cinamate, J. Lumin., 2007, 127, 508–514.

    Article  CAS  Google Scholar 

  37. P. R. Bangal, S. Panja, S. Chakravorti, Excited state photodynamics of 4-N,N-dimethylamino cinnamaldehyde: A solvent dependent competition of TICT and intermolecular hydrogen bonding, J. Photochem. Photobiol., A, 2001, 139, 5–16.

    Article  CAS  Google Scholar 

  38. A. Cahkraborty, S. Kar, N. Guchhait, Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations, Chem. Phys., 2006, 320, 75–83.

    Article  CAS  Google Scholar 

  39. S. Panja, P. Chowdhury, S. Chakravravorti, Exploring the location and orientation of 4-(N,N-dimethylamino) cinnamaldehyde in anionic, cationic and non-ionic micelles, Chem. Phys. Lett., 2003, 368, 654–662.

    Article  CAS  Google Scholar 

  40. T. S. Singh, S. Mitra, Fluorescence behavior of intramolecular charge transfer probe in anionic, cationic, and nonionic micelles, J. Colloid Interface Sci., 2007, 311, 128–134.

    Article  CAS  PubMed  Google Scholar 

  41. K. Bhattacharyya, M. Chowdhury, Environmental and magnetic field effects on exciplex and twisted charge transfer emission, Chem. Rev., 1993, 93, 507–535.

    Article  CAS  Google Scholar 

  42. W. Verbouwe, L. Viaene, M. Van der Auweraer, F. C. De Schryver, H. Masuhara, R. Pansu, J. Faure, Photoinduced intramolecular charge transfer in diphenylamino-substituted triphenylbenzene, biphenyl, and fluorine, J. Phys. Chem. A, 1997, 101, 8157–8165.

    Article  CAS  Google Scholar 

  43. Y. H. Kim, D. W. Cho, M. Yoon, D. Kim, Observation of hydrogen bonding effects on twisted intramolecular charge transfer of p-(N,N-dimethylamino)benzoic acid in aqueous cyclodextrin solutions, J. Phys. Chem., 1996, 100, 15670–15676.

    Article  CAS  Google Scholar 

  44. M. Józefowich, K. A. Kozyra, J. R. Heldt, J. Heldt, Effect of hydrogen bonding on the intramolecular charge transfer fluorescence of 6-dodecanoyl-2-dimethylaminonaphtalene, Chem. Phys., 2005, 320, 45–53.

    Article  CAS  Google Scholar 

  45. Y. Hirata, T. Okada, T. Nomoto, Significant quenching of the photoinduced charge separated state of aminophenyl(phenyl)acetylene and N,N-dimethyl aminophenyl(phenyl)acetylene in protic solvents, J. Phys. Chem. A, 1998, 102, 6585–6589.

    Article  CAS  Google Scholar 

  46. Y. Moroi, Micelles, Plenum, NY, 1992.

    Book  Google Scholar 

  47. C. Hirose, L. Sepulveda, Transfer free energies of p-alkyl-substituted benzene derivatives, benzene, and toluene from water to cationic and anionic micelles and to n-heptane, J. Phys. Chem., 1981, 85, 3689–3694.

    Article  CAS  Google Scholar 

  48. The Plasma Proteins: Structure, Function and Genetic Control, ed. F. W. Putnam, Academic Press, New York, 2nd edn, 1975, vol. 1, pp. 141 and 147.

  49. K. Hirayama, S. Akashi, M. Furuya, K. Fukuhara, Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS, Biochem. Biophys. Res. Commun., 1990, 173, 639–646.

    Article  CAS  PubMed  Google Scholar 

  50. K. Aoki, H. Okabayashi, S. Maezawa, T. Mizumo, M. Murata, K. Hiramatsu, Raman studies of Bovine Serum Albumin-ionic detergent-complexes and conformational change of albumin molecule induced by detergent binding, Biochem. Biophys. Acta, 1982, 703, 11–16.

    CAS  Google Scholar 

  51. M. N. Jones, A theoretical approach to the binding of the amphipathic molecules to globular proteins, Biochem. J., 1975, 151, 109–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaprasad Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T.S., Mitra, S. Fluorimetric studies on the binding of 4-(dimethylamino)cinnamic acid with micelles and bovine serum albumin. Photochem Photobiol Sci 7, 1063–1070 (2008). https://doi.org/10.1039/b717475f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b717475f

Navigation