Skip to main content

Advertisement

Log in

Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer

  • Forum
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Disparate presentations in the literature of the basic equations of Förster’s theory of resonance energy transfer are clarified and the limitations of these equations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Förster, Energiewanderung und Fluoreszenz, Naturwissenschaften, 1946, 6, 166–175.

    Article  Google Scholar 

  2. Th. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys., 1948, 2, 55–75.

    Article  Google Scholar 

  3. Th. Förster, Experimentelle und theoretische Untersuchung des zwischenmolekularen übergangs von Elektronenanregungsenergie, Z. Naturforsch. A, 1949, 4, 321–327.

    Article  Google Scholar 

  4. Th. Förster, Fluoreszenz Organischer Verbindungen, Vandenhoeck & Ruprecht, Göttingen, 1951.

    Google Scholar 

  5. Th. Förster, Transfer mechanisms of electronic excitation, Discuss. Faraday Soc., 1959, 27, 7–17.

    Article  Google Scholar 

  6. Th. Förster, Transfer mechanisms of electronic excitation energy, Radiation Res. Suppl., 1960, 2, 326–339.

    Article  Google Scholar 

  7. L. Stryer and R. P. Haugland, Energy transfer: a spectroscopic ruler, Proc. Natl. Acad. Sci. U. S. A., 1967, 58, 719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. V. Van Der Meer, G. Coker III, and S.-Y. Simon Chen, Resonance energy transfer: Theory and data, Wiley-VCH, New York, 1994.

    Google Scholar 

  9. J. N. Miller, Fluorescence energy transfer methods in bioanalysis, Analyst, 2005, 130, 265–270.

    Article  CAS  PubMed  Google Scholar 

  10. D. Klostermeier and D. P. Millar, Time-resolved fluorescence resonance energy transfer: A versatile tool for the analysis of nucleic acids, Biopol. (Nucleic Acid Sci.), 2002, 61, 159–179.

    CAS  Google Scholar 

  11. W. J. Greenleaf, M. T. Woodside and S. M. Block, High-resolution, single-molecule measurements of biomolecular motion, Annu. Rev. Biophys. Biomol. Struct., 2007, 36, 171–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. E. Braslavsky, Glossary of terms used in photochemistry, 3rd edn, Pure Appl. Chem., 2007, 79, 293–465.

    Article  CAS  Google Scholar 

  13. B. Valeur, Molecular fluorescence, principles and applications, Wiley-VCH, Weinheim, 2001.

    Book  Google Scholar 

  14. B. W. Van Der Meer, Kappa-squared: from nuisance to new sense, Rev. Mol. Biotechnol., 2002, 82, 181–196.

    Article  Google Scholar 

  15. Comment by Prof. W. van der Meer, Kentucky: FRET is now an abbreviation that is almost as established as NMR. Soon, nobody will say Förster Resonance Energy Transfer or Fluorescence with Resonance Energy Transfer anymore. We will all call it simply FRET. Let’s not forget, however, that there is a didactic aspect here: future spectroscopists must understand what FRET involves, and when they will be exposed to FRET for the first time, the explanation of the acronym helps to understand the principles involved. The only problem is that Fluorescence Resonance Energy Transfer is misleading in that it suggests that Fluorescence is transferred, and that is not correct. Fluorescence serves to detect the phenomenon. I have proposed to solve this problem by inserting a virtually silent “with”. Fluorescence with Resonance Energy Transfer is, in my opinion, the best name for FRET, because it is both descriptive and correct. Braslavsky et al. state that Fluorescence is not involved in Resonance Energy Transfer. However, Fluorescence is almost always used to detect it. They also point out that Förster’s theory is applicable to donor-acceptor pairs undergoing triplet-singlet energy transfer. Perhaps it is an idea to use the name Förster Resonance Energy Transfer in situations where it is not clear Fluorescence is used. I propose to use the name Fluorescence with Resonance Energy Transfer for all cases where there is Resonance Energy Transfer and Fluorescence is used to measure it.

  16. V. L. Ermolaev and E. V. Sveshnikova, Inductive-resonance energy transfer from aromatic molecules in the triplet state, Dokl. Akad. Nauk SSSR, 1963, 149, 1295–1298.

    CAS  Google Scholar 

  17. R. G. Bennett, R. P. Schwenker and R. E. Kellog, Radiationless intermolecular energy transfer. II. Triplet-singlet, transfer, J. Chem. Phys., 1964, 41, 3040–3041.

    Article  CAS  Google Scholar 

  18. R. Clegg, The history of FRET: From conception to the labor of birth, in Reviews in Fluorescence, ed. C. D. Geddes and J. R. Lakowitz, Springer, New York, 2006, pp. 1–45.

    Google Scholar 

  19. Th. Förster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, Istanbul Lectures, ed. O. Sinanoglu, Academic Press, New York, 1965.

    Google Scholar 

  20. Th. Förster, Mechanism of energy transfer, in Comprehensive Biochemistry, Bioenergetics, ed. M. Florkin and E. H. Stotz, Elsevier, Amsterdam, vol. 22, 1967.

    Google Scholar 

  21. P. Wu and L. Brand, Resonance energy transfer: Methods and applications, Anal. Biochem., 1994, 218, 1–13.

    Article  CAS  PubMed  Google Scholar 

  22. J. Lee, Malpractices in chemical calculations, U. Chem. Ed., 2007, 7, 27–32.

    Google Scholar 

  23. B. W. Van Der Meer, Orientational aspects in pair energy transfer, in Resonance Energy Transfer, ed. D. L. Andrews and A. A. Demidov, Wiley, New York, 1999, ch. 4.

    Google Scholar 

  24. C. G. dos Remedios, P. D. J. Moens, Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins: Dispelling the problem of the unknown orientation factor, J. Struct. Biol., 1995, 115, 175–185.

    Article  PubMed  Google Scholar 

  25. J. Baumann and M. D. Fayer, Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables, J. Chem. Phys., 1986, 85, 4087–4107.

    Article  CAS  Google Scholar 

  26. G. D. Scholes, Long-range resonance energy transfer in molecular systems, Annu. Rev. Phys. Chem., 2003, 54, 57–87.

    Article  CAS  PubMed  Google Scholar 

  27. J. R. DeMember and N. Filipescu, Intramolecular energy transfer between nonconjugated chromophores. Effect of rigid perpendicular orientation, J. Am. Chem. Soc., 1968, 90, 6425–6428.

    Article  CAS  Google Scholar 

  28. M. Maus, R. De, M. Lor, T. Weil, S. Mitra, U.-M. Wiesler, A. Herrmann, J. Hofkens, T. Vosch, K. Mullen, F. C. De Schryver, Intramolecular energy hopping and energy trapping in polyphenylene dendrimers with multiple peryleneimide donor chromophores and a terryleneimide acceptor trap chromophore, J. Am. Chem. Soc., 2001, 123, 7668–7676.

    Article  CAS  PubMed  Google Scholar 

  29. E. Jares-Erichman and T. M. Jovin, Imaging molecular interactions in living cells by FRET microscopy, Curr. Opin. Chem. Biol., 2006, 10, 409–416.

    Article  CAS  Google Scholar 

  30. R. Clegg, Fluorescence resonance energy transfer, Curr. Opin. Biotechnol., 1995, 6, 103–110.

    Article  CAS  PubMed  Google Scholar 

  31. M. Rao and S. Mayor, Use of Forster’s resonance energy transfer microscopy to study lipid rafts, Biochim. Biophys. Acta, 2005, 1746, 221–233.

    Article  CAS  PubMed  Google Scholar 

  32. J. C. Chang, Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls, J. Chem. Phys., 1977, 67, 3901–3909.

    Article  CAS  Google Scholar 

  33. D. Beljonne, J. Cornil, R. Silbey, P. Millie and J. L. Bredas, Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach, J. Chem. Phys., 2000, 112, 4749–4758.

    Article  CAS  Google Scholar 

  34. B. P. Krueger, G. D. Scholes and G. R. Fleming, Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method, J. Phys. Chem. B, 1998, 102, 5378–5386.

    Article  CAS  Google Scholar 

  35. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 1953, 21, 836–850.

    Article  CAS  Google Scholar 

  36. S. Speiser, Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: Solution and supersonic jet studies, Chem. Rev., 1996, 96, 1953–1976.

    Article  CAS  PubMed  Google Scholar 

  37. G. D. Scholes and K. P. Ghiggino, Electronic interactions and interchromophore excitation transfer, J. Phys. Chem., 1994, 98, 4580–4590.

    Article  CAS  Google Scholar 

  38. G. R. Fleming and G. D. Scholes, Quantum mechanics for plants, Nature, 2004, 431, 256–257.

    Article  CAS  PubMed  Google Scholar 

  39. V. Sundström, T. Pullerits, R. van Grondelle, Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit, J. Phys. Chem. B, 1999, 103, 2327–2346.

    Article  Google Scholar 

  40. M. Kasha, Energy transfer mechanisms and molecular exciton model for molecular aggregates, Radiation Res., 1963, 20, 55–71.

    Article  CAS  PubMed  Google Scholar 

  41. R. van Grondelle and V. I. Novoderezhkin, Energy transfer in photosynthesis: experimental insights and quantitative models, Phys. Chem. Chem. Phys., 2006, 8, 793–807.

    Article  PubMed  Google Scholar 

  42. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature, 2007, 446, 782–786

    Article  CAS  PubMed  Google Scholar 

  43. H. Lee, Y.-C. Cheng and G. R. Fleming, Coherence dynamics in photosynthesis: Protein protection of excitonic coherence, Science, 2007, 316, 1462–1465.

    Article  CAS  PubMed  Google Scholar 

  44. P. J. Walla, P. A. Linden, C. P. Hsu, G. D. Scholes and G. R. Fleming, Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 10808–10813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. R. S. Knox, H. van Amerongen, Refractive index dependence of the Förster resonance excitation transfer rate, J. Phys. Chem. B, 2002, 106, 5289–5293.

    Article  CAS  Google Scholar 

  46. M. F. Iozzi, B. Mennucci, J. Tomasi and R. Cammi, Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM), J. Chem. Phys., 2004, 120, 7029–7040.

    Article  CAS  PubMed  Google Scholar 

  47. G. D. Scholes, C. Curutchet, B. Mennucci, R. Cammi and J. Tomasi, How solvent controls electronic energy transfer and light harvesting, J. Phys. Chem. B, 2007, 111, 6978–6982.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrique San Román, Gregory D. Scholes or Jakob Wirz.

Additional information

This paper was published as part of the themed issue in honour of Nicholas Turro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braslavsky, S.E., Fron, E., Rodríguez, H.B. et al. Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer. Photochem Photobiol Sci 7, 1444–1448 (2008). https://doi.org/10.1039/b810620g

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b810620g

Navigation