Skip to main content
Log in

Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aerosols of submicron polystyrene particles were oxidized by either vacuum-ultraviolet (VUV) irradiation in the presence of molecular oxygen (O2) and/or by ozone (O3). Different degrees of oxidation and oxidative degradation were reached by VUV-photolysis depending on radiant energy, O2 and H2O concentrations in the bulk gas mixture as well as on particle diameter. The same functionalization was obtained by exposing the aerosol to O3, however, oxidation, in particular oxidative degradation, was less efficient. The evolution of hydroxyl and carbonyl functions introduced was quantified by ATR-FTIR spectroscopy of filtered particles, and oxidative degradation of the polymer particles was confirmed by determining size and number of aerosol particles before and after oxidation. Efficiency analyses are based on the results of an O3 actinometry and on an evaluation of the rate of absorbed photons by the aerosol particles in function of their size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fu, J. Fiegel, J. Hanes, Synthesis and characterization of PEG based ether-anhydride terpolymers: New polymers for controlled drug delivery, Macromolecules, 2004, 37, 7174–7180.

    Article  CAS  Google Scholar 

  2. See, for example: J.-Y. Kim, J. Wainaina, J.-H. Kim, J.-K. Shim, Use of polymer nanoparticles as functional nano-absorbents for low-molecular weight hydrophobic pollutants, J. Nanosci. Nanotechnol., 2007, 7, 4000–4004.

    Article  CAS  Google Scholar 

  3. S. Saliterman, Fundamentals of BioMEMS and Medical Microdevices, SPIE Press, Bellingham WA, 98225–6705, USA, 2006.

    Google Scholar 

  4. See, for example: I. Willner, B. Willner, Functional nanoparticle architectures for sensoric, optoelectronic and bioelectronic applications, Pure Appl. Chem., 2002, 74, 1773–1783.

    Article  CAS  Google Scholar 

  5. See, for example: R. Jordan, N. West, A. Ulman, Y.-M. Chou, O. Nuyken, Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles, Macromolecules, 2001, 34, 1606–1611.

    Article  CAS  Google Scholar 

  6. See, for example: C. Pichot, Position paper: functional polymer latexes, Polym. Adv. Technol., 1995, 6, 427–434.

    Article  CAS  Google Scholar 

  7. See, for example: T. Dey, Polymer-coated magnetic nanoparticles: surface modification and end-functionalization, J. Nanosci. Nanotechnol., 2006, 6, 2479–2483.

    Article  CAS  Google Scholar 

  8. R. Pearson, G. Langer, Generation of aerosols by vapour-phase polymerization of methyl acrylate, Nature, 1960, 187, 235.

    Article  CAS  Google Scholar 

  9. R. Partch, E. Matijevi, A. W. Hodgson, B. E. Aiken, Preparation of polymer colloids by chemical reactions in aerosols. I. Poly,(p-tertiarybutylstyrene), J. Polym. Sci., Polym. Chem. Ed., 1983, 21, 961.

    Article  CAS  Google Scholar 

  10. C. Esen, G. Schweiger, Preparation of Monodisperse Polymer Particles by Photopolymerization, J. Colloid Interface Sci., 1996, 179, 276–280.

    Article  CAS  Google Scholar 

  11. H. Morita, K. Semba, Z. Bastl, J. Subrt, J. Pola, N2 laser-induced formation of copolymeric ultrafine particles in a gaseous tetraethenylgermane-carbon disulfide mixture, J. Photochem. Photobiol., A, 2005, 171, 21–26.

    Article  CAS  Google Scholar 

  12. D. Lösch, V. Seidl and M. Rübenacker, Process for production of polymer powders containing vinylformamide units, BASF AG, Publ. Nr. WO/2007/054442, Intl. Appl. No.: PCT/EP2006/067866, 08.11.2005.

  13. A. Hozumi, H. Inagaki, T. Kameyama, The hydrophilization of polystyrene substrates by 172 nm vacuum ultraviolet light, J. Colloid Interface Sci., 2004, 278, 383–392.

    Article  CAS  Google Scholar 

  14. V. M. Graubner, R. Jordan, O. Nuyken, B. Schnyder, T. Lippert, R. Kötz, A. Wokaun, Photochemical modification of cross-linked poly(dimethylsiloxane) by irradiation at 172 nmn, Macromolecules, 2004, 37, 5936–5943.

    Article  CAS  Google Scholar 

  15. J. López Gejo, Applications of the VUV-photochemically initiated oxidation for waste gas treatment and surface functionalization, Dissertation, Fakultät für Chemieingenieurwesen und Verfahrenstechnik, Universität Karlsruhe, Karlsruhe, 2005.

    Google Scholar 

  16. J. López Gejo, H. Glieman, T. Schimmel, A. M. Braun, Vacuum-ultraviolet photochemically initiated modification of polystyrene surfaces: chemical changes, Photochem. Photobiol., 2005, 81, 777–782.

    Article  Google Scholar 

  17. J. López Gejo, N. P. Manoj, S. Sumalekshmy, H. Gliemann, T. Schimmel, M. Wörner, A. M. Braun, Vacuum-ultraviolet photochemically initiated modification of polystyrene surfaces: morphological changes and mechanistic investigations, Photochem. Photobiol. Sci., 2006, 5, 948–954.

    Article  CAS  Google Scholar 

  18. See, for example: V. V. Ivanov, N. A. Popov, O. V. Proshina, T. V. Rakhimova, G. B. Rulev, V. B. Saenko, Study of the ozone production and loss during oxygen photolysis in a VUV-ozonator chamber, Tech. Phys. Lett., 2001, 27, 29–31.

    Article  CAS  Google Scholar 

  19. C. S. Foote, J. S. Valentine and A. Greenberg, Active Oxygen in Chemistry, Springer, New York, 1995.

    Google Scholar 

  20. R. Wrobel, W. Sander, E. Kraka, D. Cremer, Reactions of dimethyl ether with atomic oxygen: a matrix isolation and a quantum chemical study, J. Phys. Chem. A, 1999, 103, 3693–3705.

    Article  CAS  Google Scholar 

  21. M. C. Gonzalez, E. Oliveros, M. Wörner, A. M. Braun, Vacuum ultraviolet photolysis of aqueous reaction systems, J. Photochem. Photobiol., C, 2004, 5, 225–246.

    Article  CAS  Google Scholar 

  22. M. Zahorodna, E. Oliveros, M. Wörner, R. Bogoczek, A. M. Braun, Dissolution and mineralization of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-)Fenton processes, Photochem. Photobiol. Sci., 2008, 7, 1480–1492.

    Article  CAS  Google Scholar 

  23. N. Quici, M. I. Litter, A. M. Braun, E. Oliveros, Vacuum-UV photolysis of aqueous solutions of citric and gallic acids, J. Photochem. Photobiol., A, 2008, 197, 306–312.

    Article  CAS  Google Scholar 

  24. W. Kern, Photochemical modification of polymer surfaces, Trends Photochem. Photobiol., 2001, 7, 11–30.

    CAS  Google Scholar 

  25. D. Feldman, Polymeric Building Materials, Taylor & Francis, Routledge, New York, 1989.

    Google Scholar 

  26. G. A. Olah and Á. Molnár, Hydrocarbon Chemistry, Wiley, New York, 2003.

    Book  Google Scholar 

  27. V. D. Komissarov, I. N. Komissarova, Formation of phenol during ozonolysis of benzene, Russ. Chem. Bull., 1973, 22, 656–658.

    Article  Google Scholar 

  28. J. Salas, Vicente. Modificatión fotoquímica de submicropartículas en aerosoles, Doctoral thesis, Universidad Politécnica de Valencia, Valencia, 2006 (Experimental work: Lehrstuhl für Umweltmesstechnik, Universität Karlsruhe).

    Google Scholar 

  29. K. R. May, The Collison nebulizer: description, performance and application, J. Aerosol Sci., 1973, 4, 235–238.

    Article  CAS  Google Scholar 

  30. Zs. Laszló, I. Ilisz, G. Peintler, A. Dombl, VUV intensity measurement of a 172 nm Xe excimer lamp by means of oxygen actinometry, Ozone: Sci. Eng., 1998, 20, 421–432.

    Article  Google Scholar 

  31. H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Chemical actinometry, Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  32. G. Gordon, G. E. Pacey, W. J. Cooper, R. G. Rice, Current state-of-the-art measurements of ozone in the gas phase and in solution, Ozone: Sci. Eng., 1988, 10, 353–365.

    Article  CAS  Google Scholar 

  33. K. Rakness, G. Gordon, B. Langlais, W. Masschelein, N. Matsumoto, Y. Richard, C. M. Robson, I. Somiya, Guideline for measurement of ozone concentration in the process gas from an ozone generator, Ozone: Sci. Eng., 1996, 18, 209–229.

    Article  CAS  Google Scholar 

  34. A. M. Braun, M.-T. Maurette and E. Oliveros, Technologie photochimique, Presses Polytechniques Romandes, Lausanne, 1986, Chapter 6.11.

    Google Scholar 

  35. A. M. Braun, M.-T. Maurette and E. Oliveros, Photochemical Technology, transl. D. F. Ollis and N. Serpone, Wiley, Chichester, 1991, Chapter 6.11.

    Google Scholar 

  36. Z. Falkenstein, Ozone formation with (V)UV-enhanced dielectric barrier discharges in dry and humid gas mixtures of O2, N2/O2, and Ar/O2, Ozone: Sci. Eng., 1999, 21, 583–603.

    Article  CAS  Google Scholar 

  37. A. M. Braun, I. Gassiot Pintori, H.-P. Popp, Y. Wakahata, M. Wörner, Technical development of UV-C- and VUV-photochemically induced oxidative degradation processes, Water Sci. Technol., 2004, 49, 235–240.

    Article  CAS  Google Scholar 

  38. J. Salas Vicente, J. López Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. A. Miranda, M. Wörner, E. Oliveros, G. Kasper and A. M. Braun, VUV-photochemical functionalization of polystyrene aerosols, in Basics and applications of photopolymerization reactions, ed. J. P. Fouassier and X. Allonas, Research Signpost, Trivandrum, India, 2009.

    Google Scholar 

  39. A. J. Cox, A. J. DeWeerd, J. Linden, An experiment to measure Mie and Rayleigh total scattering cross sections, Am. J. Phys., 2002, 70, 620–625.

    Article  Google Scholar 

  40. D. W. Hahn, Light scattering theory, University of Florida, Gainesville, 2008, http://plaza.ufl.edu/dwhahn/Rayleigh%20and%20Mie%20Light%20Scattering.pdf.

    Google Scholar 

  41. J. Salas Vicente, J. López Gejo, S. Rothenbacher, M. Wörner, E. Oliveros, G. Kasper, A. M. Braun, Functionalization of polystyrene aerosol particles by photooxychlorination, Appl. Mater. Interface, in preparation.

  42. G. V. Lubarsky, M. R. Davidson, R. H. Bradley, Characterization of polystyrene microspheres surface-modified using a novel UV-ozone/fluidized- bed reactor, Appl. Surf. Sci., 2004, 227, 268–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Braun.

Additional information

This article was published as part of the themed issue in honour of Esther Oliveros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente, J.S., Gejo, J.L., Rothenbacher, S. et al. Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone. Photochem Photobiol Sci 8, 944–952 (2009). https://doi.org/10.1039/b902749a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b902749a

Navigation