Issue 8, 2009

High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method

Abstract

Highly monodisperse zinc blende CdSe nanocrystals have been synthesized by using different phosphine-free Se precursors successfully. To understand the reaction mechanism and obtain high quality CdSe nanocrystals, the effects on the use of different Se and/or Cd precursors, the adjustment of the molar ratios between Cd and Se precursors, and the selection of suitable reaction and growth temperatures have been studied in details. Absorption spectrum, fluorescence spectrum, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used for the characterization of synthesized CdSe nanocrystals. The quality of as-prepared CdSe nanocrystals was reached the same high level compared with the method using phosphine selenium precursors, its quantum yields were among 30 to 60% and photoluminescence (PL) full width at half-maximum (FWHM) was well controlled between 22 and 28 nm. As core, such zinc blende CdSe nanocrystals were also used to synthesize CdSe/ZnS, CdSe/CdS, and CdSe/CdS/ZnS core-shell nanocrystals. The quantum yields of as-prepared core-shell nanocrystals were among 50 to 80%. Large-scale syntheses of such core-shell nanocrystals have been successfully demonstrated and as many as 3 g of high quality CdSe/ZnS nanocrystals were easily synthesized with the use of only low-cost, green, and environmentally friendlier reagents.

Graphical abstract: High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method

Article information

Article type
Paper
Submitted
06 May 2009
Accepted
06 May 2009
First published
26 May 2009

CrystEngComm, 2009,11, 1733-1738

High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method

H. Shen, H. Wang, Z. Tang, J. Z. Niu, S. Lou, Z. Du and L. S. Li, CrystEngComm, 2009, 11, 1733 DOI: 10.1039/B909063K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements