Issue 12, 2010

Synthesis and applications of electrochemically self-assembled titaniananotube arrays

Abstract

Highly ordered vertically oriented TiO2 nanotube arrays fabricated by electrochemical anodization offer a large surface area architecture with precisely controllable nanoscale features. These nanotubes have shown remarkable properties in a variety of applications including, for example, their use as hydrogen sensors, in the photoelectrochemical generation of hydrogen, dye-sensitized and solid-state heterojunction solar cells, photocatalytic reduction of carbon dioxide into hydrocarbons, and as a novel drug delivery platform. Herein we consider the development of the various nanotube array synthesis techniques, different applications of the TiO2 nanotube arrays, unresolved issues, and possible future research directions.

Graphical abstract: Synthesis and applications of electrochemically self-assembled titania nanotube arrays

Article information

Article type
Perspective
Submitted
17 Nov 2009
Accepted
13 Jan 2010
First published
10 Feb 2010

Phys. Chem. Chem. Phys., 2010,12, 2780-2800

Synthesis and applications of electrochemically self-assembled titania nanotube arrays

S. Rani, S. C. Roy, M. Paulose, O. K. Varghese, G. K. Mor, S. Kim, S. Yoriya, T. J. LaTempa and C. A. Grimes, Phys. Chem. Chem. Phys., 2010, 12, 2780 DOI: 10.1039/B924125F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements