Skip to main content
Log in

Secondary oxidants in human serum exposed to singlet oxygen: the influence of hemolysis

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Singlet oxygen (1O2) is produced by leucocytes during inflammatory reactions, various biochemical reactions and during photoreactions. It deactivates by reacting with a number of targets to produce reactive oxygen species (ROS) and peroxides (that in turn produce ROS). To verify whether serum had the same capability to deactivate secondary oxidants after exposure to 1O2, we provoked a photoreaction using rose bengal added to sera of 53 healthy donors and, after light delivery, reduced 2’,7’-dichlorofluorescein (DCFH) was added at the end of irradiation and fluorescence of the oxidized derivative (DCF) was recorded. To avoid optical artifacts, we analyzed the influence of hemolysis. Deactivation capability of secondary oxidants after exposure to 1O2 was stable over a long period of time, slightly different between men and women, but standard biochemistry parameters had little influence. Hemolysis, age and platelet number reduced deactivation of 1O2-induced secondary oxidants. Addition of lysed cancer cells had no influence. Blood sampling in clot act tubes gave a better signal than in heparinized tubes. Red blood cells (RBCs) loaded with antioxidants strongly decreased deactivation of secondary oxidants. Assays are in progress to evaluate the clinical implications of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCF:

Dichlorofluorescein (oxidized, fluorescent)

DCFH:

Dichlorofluorescein (reduced)

DCF-DA:

Dichlorofluorescein diacetate

FCS:

Fetal calf serum

HS:

Human serum

OD:

Optical density

PDT:

Photodynamic therapy

RB:

Rose bengal

ROS:

Reactive oxygen species

RPMI:

Roswell Park Memorial Institute

References

  1. M. B. Hampton, A. J. Kettle and C. C. Winterbourn, Inside the neutrophil phagosome: oxidants, myeloperoxidase and bacterila killing, Blood, 1998, 92, 3007–3017.

    Article  CAS  PubMed  Google Scholar 

  2. B. M. Babior, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med., 1978, 298, 659–668.

    Article  CAS  PubMed  Google Scholar 

  3. J. A. Badwey and M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem., 1980, 49, 695–726.

    Article  CAS  PubMed  Google Scholar 

  4. J. R. Kanofsky, H. Hoogland, R. Wever and S. J. Weiss, Singlet oxygen production by human eosinophils, J. Biol. Chem., 1988, 263, 9692–9696.

    CAS  PubMed  Google Scholar 

  5. J. R. Kanofsky, Singlet oxygen production by biological systems, Chem.-Biol. Interact., 1989, 70, 1–28.

    Article  CAS  PubMed  Google Scholar 

  6. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor, Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  7. A. Wright, C. L. Hawkins and M. J. Davies, Photooxydation of cells generates long-lived intracellular protein peroxides, Free Radical Biol. Med., 2003, 34, 637–647.

    Article  CAS  Google Scholar 

  8. T. Kon, T. Tanigawa, K. Hayamizu, M. Shen, T. Tsuji, Y. Naito and T. Yoshikawa, Singlet oxygen quenching activity of human serum, Redox Rep., 2004, 9, 325–330.

    Article  CAS  PubMed  Google Scholar 

  9. A. W. Girotti, Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action, Free Radical Biol. Med., 2008, 44, 956–968.

    Article  CAS  Google Scholar 

  10. C. Tanielian, R. Mechin, R. Seghrouchni and C. Schweitzer, Mechanistic and kinetic aspects of photosensitization in the presence of oxygen, Photochem. Photobiol., 2000, 71, 12–19.

    Article  CAS  PubMed  Google Scholar 

  11. D. Olivier, S. Douillard and T. Patrice, PDT of culture media containing serum induces a delayed toxicity in vitro, Radiat. Res., DOI: 10.1667/RR1646.1.

  12. R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  13. H. R. Andersen, J. B. Nielsen, F. Nielsen and P. Grandjean, Anti oxidative enzyme activities in human erythrocytes, Clin. Chem., 1997, 43, 562–568.

    Article  CAS  PubMed  Google Scholar 

  14. M. Y. Cimen, Free radical metabolism in human erythrocytes, Clin. Chim. Acta, 2008, 390, 1–11.

    Article  CAS  PubMed  Google Scholar 

  15. M. Schäfer and S. Werner, Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 2008, 58, 165–171.

    Article  PubMed  CAS  Google Scholar 

  16. B. D’autréaux and M. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 2007, 8, 813–824.

    Article  PubMed  CAS  Google Scholar 

  17. W. A. Pryor, K. N. Houk, C. S. Foote, J. M. Fukuto, L. J. Ignarro, G. L. Squadrito, K. J. A. Davies, Free radical biology and medicine: it’s a gas, man!, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2006, 291, R491–R511.

    CAS  Google Scholar 

  18. G. A. Russel, Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons, Mechanism of the interaction of peroxy radicals, J. Am. Chem. Soc., 1957, 79, 3871–3877.

    Article  Google Scholar 

  19. J. A. Howard and K. U. Ingold, The self-reaction of sec-butylperoxy radicals, Confirmation of the Russel mechanism, J. Am. Chem. Soc., 1968, 90, 1056–1058.

    Article  CAS  Google Scholar 

  20. Excited states and free radicals in biology and medicine, ed. R. V. Benssasson, E. J. Land and T. G. Truscott, Oxford Science Publications, Oxford, 1993, p 128.

    Google Scholar 

  21. J. W. Snyder, E. Skovsen, J. D. Lambert, L. Pulsen and P. R. Ogilby, Optical detection of singlet oxygen from single cells, Phys. Chem. Chem. Phys., 2006, 8, 4280–4293.

    Article  CAS  PubMed  Google Scholar 

  22. J. Moan and K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  23. D. Kessel and Y. Luo, Delayed oxidative photodamage induced by photodynamic therapy, Photochem. Photobiol., 1996, 64, 601–604.

    Article  CAS  PubMed  Google Scholar 

  24. D. V. Sakharov, E. D. R. Elstak, B. Chernyak, K. W. A. Wirtz, Prolonged lipid oxidation after photodynamic treatment, Study with oxidation-sensitive probe C11-BODIPY, FEBS Lett., 2005, 579, 1255–1260.

    Article  CAS  PubMed  Google Scholar 

  25. S. Tsimikas, Measures of oxidative stress, Clin. Lab. Med., 2006, 26, 571–590.

    Article  PubMed  Google Scholar 

  26. W. S. Waring, V. Mishra, S. R. J. Maxwell, Comparison of spectrophotometric and enhanced chemiluminescent assays of serum antioxidant capacity, Clin. Chim. Acta, 2003, 338, 67–71.

    Article  CAS  PubMed  Google Scholar 

  27. D. Huang, B. Ou and R. L. Prior, The chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 2005, 53, 1841–1856.

    Article  CAS  PubMed  Google Scholar 

  28. K. Kikugawa, N. Oikawa, A. Miyazawa, K. Shindo and T. Kato, Interaction of nitric oxide with glutathione or cysteine generates reactive oxygen species causing DNA single strand breaks, Biol. Pharm. Bull., 2005, 28, 998.

    Article  CAS  PubMed  Google Scholar 

  29. P. Bilski, A. G. Belanger and C. F. Chignell, Photosensitized oxidation of 2’,7’–dichlorofluorescin: singlet oxygen does not contribute to the formation of fluorescent oxidation product 2’,7’–dichlorofluorescein, Free Radical Biol. Med., 2002, 33, 938–946.

    Article  CAS  Google Scholar 

  30. K. Hafer, K. S. Iwamoto and R. H. Schiestl, Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations, Radiat. Res., 2008, 169, 460–468.

    Article  CAS  PubMed  Google Scholar 

  31. V. Witko, A. T. N’Guyen and B. Descamps-Latscha, Microtiter plate assay for phagocyte-derived taurine-chloramines, J. Clin. Lab. Anal., 1992, 6, 47–53.

    Article  CAS  PubMed  Google Scholar 

  32. A. Zachara, J. Gromadzinska, W. Wasowicz and Z. Zbrog, Red blood cells and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review, Acta Biochim. Pol., 2006, 53, 663–677.

    Article  CAS  PubMed  Google Scholar 

  33. E. Nagababu and J. M. Rifkind, Heme degradation by reactive oxygen species, Antioxid. Redox Signaling, 2004, 6, 967–978.

    CAS  Google Scholar 

  34. F. Wagener, H. E. van Beurden, J. W. von den Hoff, G. J. Adema and C. G. Figdor, The heme-heme oxygenase system: a molecular switch in wound healing, Blood, 2003, 102, 521–528.

    Article  CAS  PubMed  Google Scholar 

  35. Radicaux libres et stress oxidant, ed. J. Delattre, J.L. Beaudeux and D. Bonnefont-Rousselot, Lavoisier, Paris, 2005.

    Google Scholar 

  36. D. Nowis, M. Legat, T. Grzela, J. Niderla, E. Wilczek, G. M. Wilczynski, E. Glodkowska, P. Mrówka, T. Issat, J. Dulak, A. Józkowicz, H. Was, M. Adamek, A. Wrzosek, S. Nazarewski, M. Makowski, T. Stoklosa, M. Jakóbisiak and J. Golab, Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity, Oncogene, 2006, 25, 3365–3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. R. Wise and A. W. Naylor, Chilling-enhanced photooxidation: Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants, Plant Physiol., 1987, 83, 278–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P. Ninfali and G. Aluigi, Variability of oxygen radical absorbance capacity (ORAC) in different animal species, Free Radical Res., 1998, 29, 399–408.

    Article  CAS  Google Scholar 

  39. R. T. Aejmaelaeus, P. Holm, U. Kaukinen, T. J. Metsa-Ketela, P. Laippala, A. L. Hervonen and H. E. Alho, Age-related changes in the peroxyl radical scavenging capacity of human plasma, Free Radical Biol. Med., 1997, 23, 69–75.

    Article  Google Scholar 

  40. C. Feillat-Coudray, R. Tourtauchaux, M. Niculescu, E. Rock, I. Tauveron, M. C. Alexandre-Gouabau, Y. Rayssiguier, I. Jalenques and A. Mazur, Plasma levels of 8-epiPGF2á, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’ disease, Free Radical Biol. Med., 1999, 27, 463–469.

    Article  Google Scholar 

  41. S. Hercberg, P. Galan, P. Preziosi, S. Bertrais, L. Mennen, D. Malvy, A. M. Roussel, A. Favier, S. Briançon, The SU. VI. MAX study A randomized placebo-controled trial of the health effects of antioxidant vitamins and minerals, Arch. Intern. Med., 2004, 164, 2335–2343.

    Article  CAS  PubMed  Google Scholar 

  42. E. Reischl, A. L. Dafre, J. L. Franco and D. W. Filho, Distribution, adaptation and physiological meaning of thiols from vertebrate haemoglobins, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2007, 146, 22–53.

    Google Scholar 

  43. D. W. Filho, S. L. Althoff, A. L. Dafre and A. Boveris, Antioxidant defenses, longevity and ecophysiology of south American bats, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2007, 146, 214–220.

    Google Scholar 

  44. F. Cardona, Periodic dip of lipid peroxydation in humans: a redox signal to synchronize peripheral circadian clocks?, Med. Hypotheses, 2004, 63, 841–846.

    Article  CAS  PubMed  Google Scholar 

  45. J. Rutter, M. Reick, L. C. Wu, S. L. Mc Knight, Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors, Science, 2001, 293, 510–514.

    Article  CAS  PubMed  Google Scholar 

  46. A. Ghiselli, I. M. Serafin, F. Natella and C. Scaccini, Total antioxidant capacity as a tool to assess redox status: critical view and experimental data, Free Radical Biol. Med., 2000, 29, 1106–1114.

    Article  CAS  Google Scholar 

  47. Y. N. Korystov, V. V. Shaposhnikova, A. F. Korystova and M. O. Emel’yanov, Detection of reactive oxygen species induced by radiation in cells using the dichlorofluorescein assay, Radiat. Res., 2007, 168, 226–232.

    Article  CAS  PubMed  Google Scholar 

  48. W. Girotti, Photosensitizers oxidation of membrane lipids: reaction pathways, cytotoxic effects and cytoprotective mechanisms, J. Photochem. Photobiol., B, 2001, 63, 103–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Patrice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivier, D., Douillard, S., Lhommeau, I. et al. Secondary oxidants in human serum exposed to singlet oxygen: the influence of hemolysis. Photochem Photobiol Sci 8, 1476–1486 (2009). https://doi.org/10.1039/b9pp00032a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00032a

Navigation