Skip to main content
Log in

Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and 1H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1: 1 and 1: 2 metal: merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indolinenitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. V. Ros-Lis, M. Dolores Marcos, R. Martinez-Menez, K. Rurack and J. Soto, A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg2+ Ions, Angew. Chem., Int. Ed., 2005, 44, 4405–4407.

    Article  CAS  Google Scholar 

  2. J. Otsuki, T. Akasaka and K. Araki, Molecular switches for electron and energy transfer processes based on metal complexes, Coord. Chem. Rev., 2008, 252, 32–56

    Article  CAS  Google Scholar 

  3. S. Kume and H. Nishihara, Photochrome-coupled metal complexes: molecular processing of photon stimuli, Dalton Trans., 2008, 3260–3271

    Google Scholar 

  4. S. Kume and H. Nishihara, Metal-based Photoswitches Derived from Photoisomerization, Struct. Bonding, 2007, 123, 79–112

    Article  CAS  Google Scholar 

  5. M. V. Alfimov, O. A. Fedorova and S. P. Gromov, Photoswitchable molecular receptors, J. Photochem. Photobiol., A, 2003, 158, 183–198

    Article  CAS  Google Scholar 

  6. V. A. Bren, Fluorescent and photochromic chemosensors, Russ. Chem. Rev., 2001, 70(12), 1017–1036.

    Article  CAS  Google Scholar 

  7. L. Evans III, G. E. Collins, R. E. Shaffer, V. Michelet and J. D. Winkler, Selective Metals Determination with a Photoreversible Spirobenzopyran, Anal. Chem., 1999, 71, 5322–5327.

    Article  CAS  PubMed  Google Scholar 

  8. R. Guglielmetti, Spiropyrans in Photochromism: Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 2003, pp. 314–455.

    Chapter  Google Scholar 

  9. A. O. Bulanov, L. D. Popov, I. N. Shcherbakov, V. A. Kogan, V. A. Barachevsky, V. V. Lukov, S. N. Borisenko, Yu. N. Tkachenko, Synthesis, IR, UV/vis-, 1H NMR and DFT study of chelatophore functionalized spiropyrans derivatives, Spectrochim. Acta, Part A, 2008, 71, 1146–1152

    Article  CAS  Google Scholar 

  10. M. Querol, B. Bozic, N. Salluce and P. Belser, Synthesis, metal complex formation, and switching properties of spiropyrans linked to chelating sites, Polyhedron, 2003, 22, 655–664

    Article  CAS  Google Scholar 

  11. J. P. Phillips, A. Mueller and F. Przystal, Photochromic Chelating Agents, J. Am. Chem. Soc., 1965, 87(17), 4020.

    Article  CAS  Google Scholar 

  12. G. E. Collins, L. S. Choi, K. J. Ewing, V. Michelet, C. M. Bowen and J. D. Winkler, Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents, Chem. Commun., 1999, 321–322.

    Google Scholar 

  13. R. S. Stoll, M. V. Peters, A. Kuhn, S. Heiles, R. Goddard, M. Bühl, C. M. Thiele and S. Hecht, Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach, J. Am. Chem. Soc., 2009, 131, 357–367.

    Article  CAS  PubMed  Google Scholar 

  14. B. G. Jeliazkova, S. Minkovska and T. Deligeorgiev, Effect of complexation on the photochromism of 5′-(benzothiazol-2-yl)spiroindolinonaphthooxazines in polar solvents, J. Photochem. Photobiol., A, 2005, 171, 153–160

    Article  CAS  Google Scholar 

  15. T. Deligeorgiev, S. Minkovska, B. Jeliazkova and S. Rakovsky, Synthesis of photochromic chelating spironaphthoxazines (benzothiazole), Dyes Pigm., 2002, 53, 101–108.

    Article  CAS  Google Scholar 

  16. For more details, the reader is invited to visit the following web site: http://pagesperso-orange.fr/cinet.chim/index.html.

  17. N. A. Voloshin, A. V. Chernyshev, A. V. Metelitsa, S. O. Besugliy, E. N. Voloshina, L. P. Sadimenko and V. I. Minkin, Photochromic spiro[indoline-pyridobenzopyrans]: fluorescent metal-ion sensors, Arkivoc, 2004, (xi), 16–24.

    Google Scholar 

  18. A. V. Chernyshev, N. A. Voloshin, I. M. Raskita, A. V. Metelitsa and V. I. Minkin, Photo- and ionochromism of 5′-(4,5-diphenyl-1,3-oxazol-2-yl) substituted spiro[indoline-naphthopyrans], J. Photochem. Photobiol., A, 2006, 184, 289–297.

    Article  CAS  Google Scholar 

  19. E. B. Gaeva, V. Pimienta, S. Delbaere, A. V. Metelitsa, N. A. Voloshin, V. I. Minkin, G. Vermeersch and J. C. Micheau, Spectral and kinetic properties of a red-blue pH-sensitive photochromic spirooxazine, J. Photochem. Photobiol., A, 2007, 191, 114–121.

    Article  CAS  Google Scholar 

  20. M.-H. Deniel, D. Lavabre and J.-C. Micheau, Photokinetics under Continuous Irradiation, in Organic Photochromic and Thermochromic Compounds, ed. J. C. Crano and R. J. Guglielmetti, Kluwer Academic, Plenum Publisher, New York, vol. 2, 2000, pp. 167–205.

    Google Scholar 

  21. A. V. Metelitsa, J. C. Micheau, N. A. Voloshin, E. N. Voloshina and V. I. Minkin, Kinetic and Thermodynamic Investigations of the Photochromism and Solvatochromism of Semipermanent Merocyanines, J. Phys. Chem. A, 2001, 105, 8417–8422.

    Article  CAS  Google Scholar 

  22. E. Bruneau, D. Lavabre, G. Levy and J. C. Micheau, Quantitative Analysis of Continuous-Variation Plots with a Comparison of Several Methods: Spectrophotometric Study of Organic and Inorganic 1: 1 Stoichiometry Complexes, J. Chem. Educ., 1992, 69(10), 833–837

    Article  CAS  Google Scholar 

  23. A. V. Chernyshev, A. V. Metelitsa, E. B. Gaeva, N. A. Voloshin, G. S. Borodkin and V. I. Minkin, Photo- and thermochromic cation sensitive spiro[indoline-pyridobenzopyrans], J. Phys. Org. Chem., 2007, 20, 908–916.

    Article  CAS  Google Scholar 

  24. H. Görner and A. K. Chibisov, Complexes of spiropyran-derived merocyanines with metal ions. Thermally activated and light-induced processes, J. Chem. Soc., Faraday Trans., 1998, 94(17), 2557–2564

    Article  Google Scholar 

  25. A. K. Chibisov, H. Görner, Complexes of spiropyran-derived merocyanines with metal ions: relaxation kinetics, photochemistry and solvent effects, Chem. Phys., 1998, 237, 425–442.

    Article  CAS  Google Scholar 

  26. V. V. Korolev, D. Yu Vorobyev, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, A. V. Koshkin, O. A. Fedorova, S. P. Gromov, M. V. Alfimov, Yu. V. Shklyaev, T. S. Vshivkova, Y. S. Rozhkova, A. G. Tolstikov, V. V. Lokshin and A. Samat, Spironaphtoxazines produced from crown-containing dihydroisoquinolines: Synthesis and spectroscopic study of cation-dependent photochromism, J. Photochem. Photobiol., A, 2007, 192, 75–83.

    Article  CAS  Google Scholar 

  27. L. S. Atabekyan, The Kinetics of Photocolouration of Spiropyrans upon Complexation, High Energy Chem., 2002, 36(6), 397–404.

    Article  CAS  Google Scholar 

  28. J. T. C. Wojtyk, P. M. Kazmaier and E. Buncel, Merocyanine Reversion via Metal-Ion Selective Complexation: Trapping of the “Transient”cis-Merocyanine, Chem. Mater., 2001, 13, 2547–2551

    Article  CAS  Google Scholar 

  29. J. T. C. Wojtyk, P. M. Kazmaier and E. Buncel, Effects of metal ion complexation on the spiropyran-merocyanine interconversion: development of a thermally stable photo-switch, Chem. Commun., 1998, 1703–1704

    Google Scholar 

  30. J. W. Zhou, Y. T. Li and X. Q. Song, Investigation of the chelation of a photochromic spiropyran with Cu(II), J. Photochem. Photobiol., A, 1995, 87, 37–42.

    Article  CAS  Google Scholar 

  31. M. Nakamura, K. Takahashi, T. Fujioka, S. Kado, H. Sakamoto and K. Kimura, Evaluation of Photoinduced Changes in Stability Constants for Metal-Ion Complexes of Crowned Spirobenzopyran Derivatives by Electrospray Ionization Mass Spectrometry, J. Am. Soc. Mass Spectrom., 2003, 14, 1110–1115

    Article  CAS  PubMed  Google Scholar 

  32. M. Nakamura, T. Fujioka, H. Sakamoto and K. Kimura, High stability constants for multivalent metal ion complexes of crown ether derivatives incorporating two spirobenzopyran moieties, New J. Chem., 2002, 26, 554–559.

    Article  CAS  Google Scholar 

  33. C. Zhang, Z. Zhang, M. Fan and W. Yan, Positive and negative photochromism of novel spiro[indoline-phenanthrolinoxazines], Dyes Pigm., 2008, 76, 832–835

    Article  CAS  Google Scholar 

  34. M. Tanaka, M. Nakamura, M. A. Abdussalam Salhin, T. Ikeda, K. Kamada, H. Ando, Y. Shibutani and K. Kimura, Synthesis and Photochromism of Spirobenzopyran Derivatives Bearing an Oxymethylcrown Ether Moiety: Metal Ion-Induced Switching between Positive and Negative Photochromisms, J. Org. Chem., 2001, 66(5), 1533–1537

    Article  CAS  PubMed  Google Scholar 

  35. M. Tanaka, K. Kamada, H. Ando, T. Kitagaki, Y. Shibutani, S. Yajima, H. Sakamoto and K. Kimura, Metal-ion stabilization of photoinduced open colored isomer in crowned spirobenzothiapyran, Chem. Commun., 1999, 1453–1454.

    Google Scholar 

  36. S. F. Hong, X. H. Liang, H. C. Fang, X. L. Zhan, Z. Y. Zhou, L. Chen and Y. P. Cai, Synthesis and characterization of zinc(II) and cobalt(III) Schiff base complexes, Transition Met. Chem., 2009, 34, 115–120

    Article  CAS  Google Scholar 

  37. T. Kawamoto, M. Nishiwaki, Y. Tsunekawa, K. Nozaki and T. Konno, Synthesis and Characterization of Luminescent Zinc(II) and Cadmium(II) Complexes with N,S-Chelating Schiff Base Ligands, Inorg. Chem., 2008, 47, 3095–3104

    Article  CAS  PubMed  Google Scholar 

  38. J. D. Winkler, C. M. Bowen and V. Michelet, Photodynamic Fluorescent Metal Ion Sensors with Parts per Billion Sensitivity, J. Am. Chem. Soc., 1998, 120, 3237–3242.

    Article  CAS  Google Scholar 

  39. N. Shao, J. Y. Jin, H. Wang, Y. Zhang, R. H. Yang and W. H. Chan, Tunable Photochromism of Spirobenzopyran via Selective Metal Ion Coordination: An Efficient Visual and Ratioing Fluorescent Probe for Divalent Copper Ion, Anal. Chem., 2008, 80, 3466–3475.

    Article  CAS  PubMed  Google Scholar 

  40. M. S. Attia, M. M. H. Khalil, M. S. A. Abdel-Mottaleb, M. B. Lukyanova, Yu. A. Alekseenko and B. Lukyanov, Effect of Complexation with Lanthanide Metal Ions on the Photochromism of (1,3,3-Trimethyl-5-Hydroxy-6-Formyl-Indoline-Spiro2,2-[2H]chromene) in Different Media, Int. J. Photoenergy, 2006, 2006, 1–9.

    Article  CAS  Google Scholar 

  41. K. Kimura and Y. Nakahara, Analytical and Separation Chemistry by Taking Advantage of Organic Photochromism Combined with Macrocyclic Chemistry, Anal. Sci., 2009, 25, 9–20

    Article  CAS  PubMed  Google Scholar 

  42. A. Abdullah, C. J. Roxburgh and P. G. Sammes, Photochromic crowned spirobenzopyrans: Quantitative metal-ion chelation by UV, competitive selective ion-extraction and metal-ion transportation demonstration studies, Dyes Pigm., 2008, 76, 319–326

    Article  CAS  Google Scholar 

  43. C. J. Roxburgh, P. G. Sammes and A. Abdullah, Photoreversible Zn2+ Ion Transportation Across an Interface Using Ion-Chelating Substituted Photochromic 3,3′-Indolospirobenzopyrans: Steric and Electronic Controlling Effects, Eur. J. Inorg. Chem., 2008, 4951–4960.

    Google Scholar 

  44. F. Benito-Lopez, S. Scarmagnani, Z. Walsh, B. Paull, M. Macka and D. Diamond, Spiropyran Modified Micro-fluidic Chip Channels as Photonically Controlled Self-Indicating System for Metal Ion Accumulation and Release, Sens. Actuators, B, 2009, 140, 295–303.

    Article  CAS  Google Scholar 

  45. K. Fries, S. Samanta, S. Orski and J. Locklin, Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers, Reversible colorimetric ion sensors based on surface initiated polymerization of photochromic polymers, Chem. Commun., 2008, 6288–6290

    Google Scholar 

  46. A. Radu, S. Scarmagnani, R. Byrne, C. Slater, K. T. Lau and D. Diamond, Photonic modulation of surface properties: a novel concept in chemical sensing, J. Phys. D: Appl. Phys., 2007, 40, 7238–7244

    Article  CAS  Google Scholar 

  47. R. J. Byrne, S. E. Stitzel and D. Diamond, Photo-regenerable surface with potential for optical sensing, J. Mater. Chem., 2006, 16, 1332–1337.

    Article  CAS  Google Scholar 

  48. S. Yagi, S. Nakamura, D. Watanabe and H. Nakazumi, Colorimetric sensing of metal ions by bis(spiropyran) podands: Towards naked-eye detection of alkaline earth metal ions, Dyes Pigm., 2009, 80, 98–105

    Article  CAS  Google Scholar 

  49. Z. Liu, L. Jiang, Z. Liang and Y. Gao, Photo-switchable molecular devices based on metal-ionic recognition, Tetrahedron Lett., 2005, 46, 885–887.

    Article  CAS  Google Scholar 

  50. S. Kumar, D. Hernandez, B. Hoa, Y. Lee, J. S. Yang and A. McCurdy, Synthesis, Photochromic Properties and Light-Controlled Metal Complexation of a Naphthopyran Derivative, Org. Lett., 2008, 10(17), 3761–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Kumar, C. Chau, G. Chau and A. McCurdy, Synthesis and metal complexation properties of bisbenzospiropyran chelators in water, Tetrahedron, 2008, 64, 7097–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Ren and H. Tian, Thermally Stable Merocyanine Form of Photochromic Spiropyran with Aluminium Ion as a Reversible Photo-driven Sensor in Aqueous Solution, Sensors, 2007, 7, 3166–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Claude Micheau.

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharova, M.I., Coudret, C., Pimienta, V. et al. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors. Photochem Photobiol Sci 9, 199–207 (2010). https://doi.org/10.1039/b9pp00112c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00112c

Navigation