Skip to main content
Log in

Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 °C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

ANS:

1-Anilino-8-naphthalene sulfonate

CD:

Circular dichroism

Ni-NTA:

Nickel nitrilotriacetic acid

Ppy :

Photinus pyralis

References

  1. M. Deluca, and W. D. McElroy, Purification and properties of firefly luciferase, Methods Enzymol., 1978, 57, 3–15.

    Article  CAS  Google Scholar 

  2. H. H. Seliger, and W. D. McElroy, Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys., 1960, 88, 136–141.

    Article  CAS  PubMed  Google Scholar 

  3. J. R. De Wet, K. V. Wood, D. R. Helinski, and M. DeLuca, Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 7870–7873.

    Article  PubMed  PubMed Central  Google Scholar 

  4. E. Conti, N. P. Franks, and P. Brick, Crystal structure of firefly luciferase throws light on a super-family of adenylate-forming enzymes, Structure, 1996, 4, 287–298.

    Article  CAS  PubMed  Google Scholar 

  5. H. Spielmann, U. Jacob-Mueller, and P. Schulz, Simple assay of 0.1-1.0 pmol of ATP, ADP, and AMP in single somatic cells using purified luciferin luciferase, Anal. Biochem., 1981, 113, 172–178.

    Article  CAS  PubMed  Google Scholar 

  6. C. A. Garcia, A. Ahmadian, B. Gharizadeh, J. Lundeberg, M. Ronaghi, P. Nyrén, Mutation detection by pyrosequencing: Sequencing of exons 5-8 of the p53 tumor suppressor gene, Gene, 2000, 253, 249–257.

    Article  CAS  PubMed  Google Scholar 

  7. W. Ansorge, Next-generation DNA sequencing techniques, New Biotechnol., 2009, 25, 195–203.

    Article  CAS  Google Scholar 

  8. A. Prinz, G. Reither, M. Diskar, and C. Schultz, Fluorescence and bioluminescence procedures for functional proteomics, Proteomics, 2008, 8, 1179–1196.

    Article  CAS  PubMed  Google Scholar 

  9. K. Hakkila, M. Maksimow, M. Karp, and M. Virta, Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors, Anal. Biochem., 2002, 301, 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. D. Groskreutz, E. T. Schenborn, Reporter Systems, 1997, 63, 11–30.

    CAS  Google Scholar 

  11. C. H. Contag, and M. H. Bachmann, Advances in in vivo bioluminescence imaging of gene expression, 2002, Vol. 4, pp. 235–260.

    Google Scholar 

  12. P. V. Dickson, B. Hamner, C. Y. C. Ng, M. M. Hall, J. Zhou, P. W. Hargrove, M. B. McCarville, and A. M. Davidoff, In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma, J. Pediatr. Surg., 2007, 42, 1172–1179.

    Article  PubMed  Google Scholar 

  13. R. S. Dothager, K. Flentie, B. Moss, M. H. Pan, A. Kesarwala, D. Piwnica-Worms, Advances in bioluminescence imaging of live animal models, Curr. Opin. Biotechnol., 2009, 20, 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. D. Kirsch, and E. Joly, An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes, Nucleic Acids Res., 1998, 26, 1848–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. N. Ugarova, and L. Y. Brovko, Protein structure and bioluminescent spectra for firefly bioluminescence, Luminescence, 2002, 17, 321–330.

    Article  CAS  PubMed  Google Scholar 

  16. N. K. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar, H. Naderi-Manesh, The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase, J. Biol. Chem., 2007, 282, 8641–8647.

    Article  CAS  PubMed  Google Scholar 

  17. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh, and B. S. Alipour, Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases, Biochemistry, 2009, 48, 575–582.

    Article  CAS  PubMed  Google Scholar 

  18. A. Riahi-Madvar, and S. Hosseinkhani, Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis, Protein Eng., Des. Sel., 2009, 22, 655–663.

    Article  CAS  Google Scholar 

  19. P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe, J. A. H. Murray, mproved thermostability of the North American firefly luciferase: Saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. H. E. Law, O. A. Gandelman, L. C. Tisi, C. R. Lowe, J. A. H. Murray, Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance, Biochem. J., 2006, 397, 305–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. R. Branchini, D. M. Ablamsky, M. H. Murtiashaw, L. Uzasci, H. Fraga, and T. L. Southworth, Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications, Anal. Biochem., 2007, 361, 253–262.

    Article  CAS  PubMed  Google Scholar 

  22. L. C. Tisi, P. J. White, D. J. Squirrell, M. J. Murphy, C. R. Lowe, J. A. H. Murray, Development of a thermostable firefly luciferase, Anal. Chim. Acta, 2002, 457, 115–123.

    Article  CAS  Google Scholar 

  23. B. Said Alipour, S. Hosseinkhani, S. K. Ardestani, and A. Moradi, The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase, Photochem. Photobiol. Sci., 2009, 8, 847–855.

    Article  CAS  PubMed  Google Scholar 

  24. K. Hirokawa, N. Kajiyama, and S. Murakami, Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, 1597, 271–279.

    Article  CAS  Google Scholar 

  25. H. Fujii, K. Noda, Y. Asami, A. Kuroda, M. Sakata, and A. Tokida, Increase in bioluminescence intensity of firefly luciferase using genetic modification, Anal. Biochem., 2007, 366, 131–136.

    Article  CAS  PubMed  Google Scholar 

  26. D. F. Stickle, L. G. Presta, K. A. Dill, and G. D. Rose, Hydrogen bonding in globular proteins, J. Mol. Biol., 1992, 226, 1143–1159.

    Article  CAS  PubMed  Google Scholar 

  27. P. L. Privalov, and S. J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem., 1988, 39, 191–234.

    Article  CAS  PubMed  Google Scholar 

  28. B. W. Matthews, H. Nicholson, and W. J. Becktel, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 6663–6667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Mitchinson, and J. A. Wells, Protein engineering of disulfide bonds in subtilisin BPN’, Biochemistry, 1989, 28, 4807–4815.

    Article  CAS  PubMed  Google Scholar 

  30. M. Matsumura, W. J. Becktel, M. Levitt, and B. W. Matthews, Stabilization of phage T4 lysozyme by engineered disulfide bonds, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 6562–6566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Yutani, K. Ogasahara, and Y. Sugino, Effect of amino acid substitutions on conformational stability of a protein, Adv. Biophys., 1985, 20, 13–29.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Li, P. M. Coutinho, and C. Ford, Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase, Protein Eng., Des. Sel., 1998, 11, 661–667.

    Article  CAS  Google Scholar 

  33. H. L. Liu, C. Ford, and P. J. Reilly, Mutations to alter Aspergillus awamori glucoamylase selectivity. IV. Combinations, of Asn20→Cys/Ala27→Cys, Ser30→Pro, Gly137→Ala, 311→314 loop, Ser411→Ala and Ser436→Pro, Protein Eng., Des. Sel., 1999, 12, 163–172.

    Article  CAS  Google Scholar 

  34. C. B. Anfinsen, and H. A. Scheraga, Experimental and theoretical aspects of protein folding, Adv. Protein Chem., 1975, 29, 205–300.

    Article  CAS  PubMed  Google Scholar 

  35. I. M. Plaza Del Pino, B. Ibarra-Molero, J. M. Sanchez-Ruiz, Lower kinetic limit to protein thermal stability: A proposal regarding protein stability in vivo and its relation with misfolding diseases, Proteins: Struct., Funct., Genet., 2000, 40, 58–70.

    Article  Google Scholar 

  36. J. Clarke, and A. R. Fersht, Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation, Biochemistry, 1993, 32, 4322–4329.

    Article  CAS  PubMed  Google Scholar 

  37. C. B. Anfinsen, and E. Haber, Studies on the reduction and re-formation of protein disulfide bonds, J. Biol. Chem., 1961, 236, 1361–1363.

    Article  CAS  PubMed  Google Scholar 

  38. F. H. White, Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease, J. Biol. Chem., 1961, 236, 1353–1360.

    Article  CAS  PubMed  Google Scholar 

  39. K. A. Ahmed, S. W. Schaffer, and D. B. Wetlaufer, Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers, J. Biol. Chem., 1975, 250, 8477–8482.

    Article  CAS  PubMed  Google Scholar 

  40. W. A. Prinz, F. Åslund, A. Holmgren, and J. Beckwith, The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm, J. Biol. Chem., 1997, 272, 15661–15667.

    Article  CAS  PubMed  Google Scholar 

  41. P. H. Bessette, F. Åslund, J. Beckwith, and G. Georgiou, Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 13703–13708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W. D. McElroy, M. DeLuca, and J. Travis, Molecular Uniformity in Biological Catalyses: The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared, Science, 1967, 157, 150–160.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Oba, M. Sato, Y. Ohta, and S. Inouye, Identification of paralogous genes of firefly luciferase in the Japanese firefly, Luciola cruciata, Gene, 2006, 368, 53–60.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Oba, M. Ojika, and S. Inouye, Firefly luciferase is a bifunctional enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA synthetase, FEBS Lett., 2003, 540, 251–254.

    Article  CAS  PubMed  Google Scholar 

  45. T. Weber, and M. A. Marahiel, Exploring the Domain Structure of Modular Nonribosomal Peptide Synthetases, Structure, 2001, 9, R3–9.

    Article  CAS  PubMed  Google Scholar 

  46. J. C. Day, T. I. Goodall, and M. J. Bailey, The evolution of the adenylate-forming protein family in beetles: Multiple luciferase gene paralogues in fireflies and glow-worms, Mol. Phylogenet. Evol., 2009, 50, 93–101.

    Article  CAS  PubMed  Google Scholar 

  47. V. R. Viviani, A. C. R. Silva, G. L. O. Perez, R. V. Santelli, E. J. H. Bechara, and F. C. Reinach, Cloning and Molecular Characterization of the cDNA for the Brazilian Larval Click-beetle Pyrearinus termitilluminans Luciferase, Photochem. Photobiol., 1999, 70, 254–260.

    Article  CAS  PubMed  Google Scholar 

  48. V. R. Viviani, F. G. C. Arnoldi, B. Venkatesh, A. J. S. Neto, F. G. T. Ogawa, A. T. L. Oehlmeyer, and Y. Ohmiya, Active-Site Properties of Phrixotrix Railroad Worm Green and Red Bioluminescence-Eliciting Luciferases, J. Biochem., 2006, 140, 467–474.

    Article  CAS  PubMed  Google Scholar 

  49. Z. T. Campbell, A. Weichsel, W. R. Montfort, and T. O. Baldwin, Crystal Structure of the Bacterial Luciferase/Flavin Complex Provides Insight into the Function of the β Subunit, Biochemistry, 2009, 48, 6085–6094.

    Article  CAS  PubMed  Google Scholar 

  50. A. J. Fisher, T. B. Thompson, J. B. Thoden, T. O. Baldwin, and I. Rayment, The 1.5-Å Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions, J. Biol. Chem., 1996, 271, 21956–21968.

    Article  CAS  PubMed  Google Scholar 

  51. G. A. Stepanyuk, H. Xu, C.-K. Wu, S. V. Markova, J. Lee, E. S. Vysotski, B.-C. Wang, Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells, Protein Expression Purif., 2008, 61, 142–148.

    Article  CAS  Google Scholar 

  52. S. C. Alter, and M. DeLuca, The sulfhydryls of firefly luciferase are not essential for activity, Biochemistry, 1986, 25, 1599–1605.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Ohmiya, and F. I. Tsuji, Mutagenesis of firefly luciferase shows that cysteine residues are not required for bioluminescence activity, FEBS Lett., 1997, 404, 115–117.

    Article  CAS  PubMed  Google Scholar 

  54. J. R. Kumita, L. Jain, E. Safroneeva, and G. A. Woolley, A cysteine-free firefly luciferase retains luminescence activity, Biochem. Biophys. Res. Commun., 2000, 267, 394–397.

    Article  CAS  PubMed  Google Scholar 

  55. R. Lee, Role and reactivity of sulfhydryl groups in firefly luciferase, Biochemistry, 1969, 8, 130–136.

    Article  CAS  PubMed  Google Scholar 

  56. V. S. Dani, C. Ramakrishnan, and R. Varadarajan, MODIP revisited: Re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins, Protein Eng., Des. Sel., 2003, 16, 187–193.

    Article  CAS  Google Scholar 

  57. R. R. Thangudu, A. Vinayagam, G. Pugalenthi, A. Manonmani, B. Offmann, and R. Sowdhamini, Native and modeled disulfide bonds in proteins: Knowledge-based approaches toward structure prediction of disulfide-rich polypeptides, Proteins: Struct., Funct., Bioinf., 2005, 58, 866–879.

    Article  CAS  Google Scholar 

  58. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem., 1976, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  59. C. K. Riener, G. Kada, and H. J. Gruber, Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine, Anal. Bioanal. Chem., 2002, 373, 266–276.

    Article  CAS  PubMed  Google Scholar 

  60. P. Manavalan, W. C. Johnson Jr, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem., 1987, 167, 76–85.

    Article  CAS  PubMed  Google Scholar 

  61. J. T. Yang, C. S. Wu, and H. M. Martinez, Calculation of protein conformation from circular dichroism, Methods Enzymol., 1986, 130, 208–269.

    Article  CAS  PubMed  Google Scholar 

  62. S. M. Kelly, and N. C. Price, The Use of Circular Dichroism in the Investigation of Protein Structure and Function, Curr. Protein Pept. Sci., 2000, 1, 349–384.

    Article  CAS  PubMed  Google Scholar 

  63. F. x. Schmid, Optical spectroscopy to characterize protein conformation and conformational changes, in (T. E. Creighton, ed., Protein Structure a Practical Approach., 1997, pp. 261–297.

    Google Scholar 

  64. S. G. Gould, G. A. Keller, and S. Subramani, Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase, J. Cell Biol., 1987, 105, 2923–31.

    Article  CAS  PubMed  Google Scholar 

  65. G. A. Keller, S. Gould, M. Deluca, and S. Subramani, Firefly luciferase is targeted to peroxisomes in mammalian cells, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 3264–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. Xiong, F. Fenel, M. Leisola, and O. Turunen, Engineering the thermostability of Trichoderma reesei endo-1,4-β- xylanase II by combination of disulfide bridges, Extremophiles, 2004, 8, 393–400.

    Article  CAS  PubMed  Google Scholar 

  67. J. M. Mason, M. J. Cliff, R. B. Sessions, and A. R. Clarke, Low energy pathways and non-native interactions: The influence of artificial disulfide bridges on the mechanism of folding, J. Biol. Chem., 2005, 280, 40494–40499.

    Article  CAS  PubMed  Google Scholar 

  68. S. Betz, Disulfide bonds and the stability of globular proteins, Proteins, 1993, 21, 167–195.

    Google Scholar 

  69. A. Kitayama, H. Yoshizaki, Y. Ohmiya, H. Ueda, and T. Nagamune, Creation of a Thermostable Firefly Luciferase with pH-insensitive Luminescent Color, Photochem. Photobiol., 2003, 77, 333–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saman Hosseinkhani or Shahin Ahmadian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imani, M., Hosseinkhani, S., Ahmadian, S. et al. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 9, 1167–1177 (2010). https://doi.org/10.1039/c0pp00105h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00105h

Navigation