Skip to main content
Log in

Determination of photostability and photodegradation products of moxifloxacin in the presence of metal ions in solutions and solid phase. Kinetics and identification of photoproducts

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photostability of moxifloxacin (MOXI) after UVA irradiation in solutions and solid phase, with and without participation of Cu(ii), Zn(ii), Al(iii), and Fe(iii) was tested. The studies were carried out by the TLC-densitometric method and LC-MS/MS method. Elaborated and validated chromatography-densitometric method was used for assaying. It was shown that the number and type of photoproducts depend on the environment and type of the metal ion. The studied ions enhanced the degradation of MOXI in solutions, and the influence of Cu(ii) and Fe(iii) ions was higher than that of Zn(ii) and Al(iii) ions. In solid phase, in contrast to solutions, all metal ions decreased the photodegradation, however the influence of ions, Al(iii) and Zn(ii), was weaker than that of Cu(ii) and Fe(iii) ions. Identification of the degradation products performed with LC-MS/MS and 1H NMR identified them as: 1-cyclopropyl-6-fluoro-7-amino-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, 1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-7-(2-oxo-octahydro-6H-pyrrolo[3,4-b]pyridine-6-yl)-1,4-dihydroquinoline-3-carboxylic acid, 7-[3-hydroxyamino-4-(2-carboxyethyl)pyrrolidin-1-yl]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Zhanel, K. Ennis, L. Vercaigne, A. Walkty, A. S. Gin, J. Embil, H. Smith, D. J. Hoban, A critical review of the fluoroquinolones: focus on respiratory infections, Drugs, 2002, 62, 13–59.

    Article  CAS  Google Scholar 

  2. J. A. Balfour, H. M. Lamb, Moxifloxacin: a review of its clinical potential in the management of community–acquired respiratory tract infections, Drugs, 2000, 59, 115–39.

    Article  CAS  Google Scholar 

  3. V. T. Andriole, The Quinolone: past, present and future, Clin. Infect. Dis., 2005, 41Supl.2, 113–119.

    Article  Google Scholar 

  4. J. J. Champoux, DNA topoisomerases: structure, function, and mechanism, Annu. Rev. Biochem., 2001, 70, 369–413.

    Article  CAS  Google Scholar 

  5. C. M. Tobin, J. Sunderland, L. O. White, A. P. MacGowan, D. S. Reeves, An isocratic high performance liquid chromatography (HPLC) assay for moxifloxacin, a new 8-methoxyquinolone, J. Antimicrob. Chemother., 1998, 42, 278–279.

    Article  CAS  Google Scholar 

  6. H. Liang, M. B. Kays, K. M. Sowinski, Separation of levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin, trovafloxacin and cinoxacin by high-performance liquid chromatography: application to lovefloxacin determination in human plasma, J. Chromatogr. B, 2002, 772, 53–63.

    Article  CAS  Google Scholar 

  7. T. Lemoine, D. Breilh, D. Ducint, J. Dubrez, J. Jougon, J. F. Velly, M. C. Saux, Determination of moxifloxacin (BAY 12-8039) in plasma and lung tissue by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method with a new polymeric cartridge, J. Chromatogr. B, 2000, 742, 247–254.

    Article  CAS  Google Scholar 

  8. A. Laban-Djurdjević, M. Jelikić-Stankov, P. Djurdjević, Optimization and validation of the direct HPLC method for the determination of moxifloxacin in plasma, J. Chromatogr. B, 2006, 844, 104–111.

    Article  Google Scholar 

  9. S. Tatar Ulu, High-performance liquid chromatography assay for moxifloxacin: pharmacokinetics in human plasma, J. Pharm. Biomed. Anal., 2007, 43, 320–324.

    Article  CAS  Google Scholar 

  10. J. De Smet, K. Boussery, K. Colpaert, P. De Sutter, P. De Paepe, J. Decruyenaere, J. Van Bocxlaer, Pharmacokinetic of fluoroquinolones in critical care patients: A bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma, J. Chromatogr. B, 2009, 877, 961–967.

    Article  Google Scholar 

  11. European Pharmacopeia, 6th ed., Council of Europe, European Directorate for the Quality of Medicines, Strasbourg 2008.

  12. P. Djurdjevic, A. Ciric, A. Djurdjevic, M. J. Stankov, Optimization of separation and determination of moxifloxacin and its related substances by RP-HPLC, J. Pharm. Biomed. Anal., 2009, 50, 117–126.

    Article  CAS  Google Scholar 

  13. M. L. Devi, K. B. Chandrasekhar, A Validated, Specific stability-indicating RP-LC method for moxifloxacin and its related substances, Chromatographia, 2009, 69, 993–999.

    Article  Google Scholar 

  14. M. Ravikumar, M. Satish Varma, T. Satyanarayana Raju, P. Suchitra, P. Yadagiri Swamy, Enantiomeric separation of moxifloxacin and its (R,R)-isomer by ligand-exchange chiral chromatography, Chromatographia, 2009, 69, 85–89.

    Article  CAS  Google Scholar 

  15. K. Vishwanathan, Determination of moxifloxacin in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry, J. Pharm. Biomed. Anal., 2002, 30, 961–968.

    Article  CAS  Google Scholar 

  16. L. Cruz, R. Hall, Enantiometric purity assay of moxifloxacin hydrochloride by capillary electrophoresis, J. Pharm. Biomed. Anal., 2005, 38, 8–13.

    Article  CAS  Google Scholar 

  17. J. G. Moller, Capillary electrophoresis with laser-induced fluorescence: a routine method to determine moxifloxacin in human body fluids in very small sample volumes, J. Chromatogr. B, 1998, 716, 325–334.

    Article  CAS  Google Scholar 

  18. R. Inam, H. Mercan, Differential pulse polarographic determination of moxifloxacin hydrochloride in pharmaceuticals and biological fluids, Anal. Lett., 2007, 40, 529–546.

    Article  CAS  Google Scholar 

  19. M. Y. Salem, N. M. El-Guindi, H. K. Mikael, L. El-Sayed Abd El-Fattah, Stability indicating method for the determination of some fluoroquinolones in the presence of their decarboxylated degradates, Chem. Pharm. Bull., 2006, 54, 1625–1632.

    Article  CAS  Google Scholar 

  20. S. K. Motwani, S. Chopra, F. J. Ahamad, R. K. Khar, Validated spectrophotometric methods for the estimation of moxifloxacin in bulk and pharmaceutical formulations, Spectrochim. Acta, Part A, 2007, 68, 250–256.

    Article  Google Scholar 

  21. S. K. Motwani, R. K. Khar, F. J. Ahamad, S. Chopra, K. Kohil, S. Talegaonkar, Application of a validated stability-indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin, Anal. Chim. Acta, 2007, 582, 75–82.

    Article  CAS  Google Scholar 

  22. U. Hubicka, J. Krzek, Effect of selected metal ions on the photodegradation of ciprofloxacin in the solid phase, J. AOAC Int., 2008, 91, 1331–1338.

    Article  CAS  Google Scholar 

  23. M. J. Lovdahl, S. R. Priebe, Characterization of clinafloxacin photodegradation products by LC-MS/MS and NMR, J. Pharm. Biomed. Anal., 2000, 23, 521–534.

    Article  CAS  Google Scholar 

  24. E. Fasani, M. Rampi, A. Albini, Photochemistry of some fluoroquinolones: effect of pH and chloride ion, J. Chem. Soc., Perkin Trans. 2, 1999, 9, 1901–1907.

    Article  Google Scholar 

  25. J. Nieto, J. Freer, D. Contreras, R. J. Candal, E. E. Sileo, H. D. Mansilla, Photocatalyzed degradation of flumequine by doped TiO2 and simulated solar light, J. Hazard. Mater., 2008, 155, 45–50.

    Article  CAS  Google Scholar 

  26. T. Araki, Y. Kawai, I. Ohta, H. Kitaoka, Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution, Chem. Pharm. Bull., 2002, 50, 229–234.

    Article  CAS  Google Scholar 

  27. H. de Vries, G. M. J. Beijersbergen van Henegouwen, Photochemical decomposition of lomefloxacin in vitro and in vivo, J. Photochem. Photobiol., B, 2000, 58, 6–12.

    Article  Google Scholar 

  28. V. Giampietro, L. Facciolo, M. Canton, D. Vedaldi, F. Dall’Acqua, G. G. Aloisi, M. Amelia, A. Barbalina, F. Elisei, L. Latterini, Photophysical and phototoxic properties of the antibacterial fluoroquinolones levofloxacin and moxifloxacin, Chem. Biodiversity, 2004, 1, 782–801.

    Article  Google Scholar 

  29. F. Lorenzo, S. Navaratnam, R. Edge, N. S. Allen, Primary photophysical properties of moxifloxacin–a fluoroquinolone antibiotic, Photochem. Photobiol., 2008, 84, 1118–1125.

    Article  CAS  Google Scholar 

  30. X. Van Doorslaer, K. Demeestere, P. M. Heynderickx, H. Vangenhore, J. Dewulf, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption, Appl. Catal., B, 2011, 101, 540–547.

    Article  Google Scholar 

  31. ICH-Q1B Stability Testing: Photostability Testing of New Drug Substances and Products, International Conference on Harmonization, Geneva, November 2005 http://www.ich.org

  32. B. Urbaniak, Z. J. Kokot, Analysis of the factors that significantly influence the stability of fluoroquinolone-metal complexes, Anal. Chim. Acta, 2009, 6471, 54–59.

    Article  CAS  Google Scholar 

  33. T. Paul, P. L. Miller, T. J. Strathmann, Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents, Environ. Sci. Technol., 2007, 41, 4720–4727.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Krzek.

Additional information

Electronic supplementary information (ESI) available: See DOI: 10.1039/c1pp05259d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubicka, U., Krzek, J., Żuromska, B. et al. Determination of photostability and photodegradation products of moxifloxacin in the presence of metal ions in solutions and solid phase. Kinetics and identification of photoproducts. Photochem Photobiol Sci 11, 351–357 (2012). https://doi.org/10.1039/c1pp05259d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05259d

Navigation