Issue 24, 2012

Extended graphynes: simple scaling laws for stiffness, strength and fracture

Abstract

The mono-atomistic structure and chemical stability of graphene provides a promising platform to design a host of novel graphene-like materials. Using full atomistic first-principles based ReaxFF molecular dynamics, here we perform a systematic comparative study of the stability, structural and mechanical properties of graphynes – a variation of the sp2 carbon motif wherein the characteristic hexagons of graphene are linked by sp1 acetylene (single- and triple-bond) carbyne-like chains. The introduction of acetylene links introduces an effective penalty in terms of stability, elastic modulus (i.e., stiffness), and failure strength, which can be predicted as a function of acetylene repeats, or, equivalently, lattice spacing. We quantify the mechanical properties of experimental accessible graphdiyne, with a modulus on the order of 470 to 580 GPa and a ultimate strength on the order of 36 GPa to 46 GPa (direction dependent). We derive general scaling laws for the cumulative effects of additional acetylene repeats, formulated through a simple discrete spring-network framework, allowing extrapolation of mechanical performance to highly extended graphyne structures. Onset of local tensile buckling results in a transitional regime characterized by a severe reduction of strength (ultimate stress), providing a new basis for scaling extended structures. Simple fracture simulations support the scaling functions, while uncovering a “two-tier” failure mode for extended graphynes, wherein structural realignment facilitates stress transfer beyond initial failure. Finally, the specific modulus and strength (normalized by areal density) is found to be near-constant, suggesting applications for light-weight, yet structurally robust molecular components.

Graphical abstract: Extended graphynes: simple scaling laws for stiffness, strength and fracture

Article information

Article type
Paper
Submitted
27 Jun 2012
Accepted
10 Oct 2012
First published
25 Oct 2012

Nanoscale, 2012,4, 7797-7809

Extended graphynes: simple scaling laws for stiffness, strength and fracture

S. W. Cranford, D. B. Brommer and M. J. Buehler, Nanoscale, 2012, 4, 7797 DOI: 10.1039/C2NR31644G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements